English | 简体中文
graftcp
can redirect the TCP connection made by the given program [application, script, shell, etc.] to SOCKS5 or HTTP proxy.
Compared with tsocks, proxychains or proxychains-ng, graftcp
is not using the LD_PRELOAD trick which only work for dynamically linked programs, e.g., applications built by Go can not be hook by proxychains-ng. graftcp
can trace or modify any
given program's connect by ptrace(2)
, so it is workable for any program. The principle will be explained in this paragraph of how does it work.
graftcp
runs on Linux. Building graftcp-local
requires Go installed.
git clone https://github.com/hmgle/graftcp.git
cd graftcp
make
After make finishes, you'll be able to use local/graftcp-local
and ./graftcp
.
Optionally, you can also install them to system:
sudo make install
# Install systemed unit
sudo make install_systemd
# Activate systemd service
sudo make enable_systemd
Download the Debian or Arch Linux package from https://github.com/hmgle/graftcp/releases and install.
graftcp-local
:
$ local/graftcp-local -h
Usage of local/graftcp-local:
-config string
Path to the configuration file
-http_proxy string
http proxy address, e.g.: 127.0.0.1:8080
-listen string
Listen address (default ":2233")
-logfile string
Write logs to file
-loglevel value
Log level (0-6) (default 1)
-pipepath string
Pipe path for graftcp to send address info (default "/tmp/graftcplocal.fifo")
-select_proxy_mode string
Set the mode for select a proxy [auto | random | only_http_proxy | only_socks5] (default "auto")
-service string
Control the system service: ["start" "stop" "restart" "install" "uninstall"]
-socks5 string
SOCKS5 address (default "127.0.0.1:1080")
-syslog
Send logs to the local system logger (Eventlog on Windows, syslog on Unix)
graftcp
:
$ graftcp -h
Usage: graftcp [options] prog [prog-args]
Options:
-c --conf-file=<config-file-path>
Specify configuration file.
Default: $XDG_CONFIG_HOME/graftcp/graftcp.conf
-a --local-addr=<graftcp-local-IP-addr>
graftcp-local's IP address. Default: localhost
-p --local-port=<graftcp-local-port>
Which port is graftcp-local listening? Default: 2233
-f --local-fifo=<fifo-path>
Path of fifo to communicate with graftcp-local.
Default: /tmp/graftcplocal.fifo
-b --blackip-file=<black-ip-file-path>
The IP/CIDR in black-ip-file will connect direct
-w --whiteip-file=<white-ip-file-path>
Only redirect the connect that destination IP/CIDR in
the white-ip-file to SOCKS5
-n --not-ignore-local
Connecting to local is not changed by default, this
option will redirect it to SOCKS5
-u --user=<username>
Run command as USERNAME handling setuid and/or setgid
-V --version
Show version
-h --help
Display this help and exit
mgraftcp
: Combined graftcp-local
and graftcp
(mgraftcp
= graftcp-local
+ graftcp
).
mgraftcp
can be used to replace graftcp
without running graftcp-local
.
Usage: mgraftcp [-hn] [-b value] [--enable-debug-log] [--http_proxy value] [--select_proxy_mode value] \
[--socks5 value] [--socks5_password value] [--socks5_username value] [--version] [-w value] prog [prog-args]
-b, --blackip-file=value
The IP/CIDR in black-ip-file will connect direct
--enable-debug-log
enable debug log
-h, --help Display this help and exit
--http_proxy=value
http proxy address, e.g.: 127.0.0.1:8080
-n, --not-ignore-local
Connecting to local is not changed by default, this option
will redirect it to SOCKS5
--select_proxy_mode=value
Set the mode for select a proxy [auto | random |
only_http_proxy | only_socks5 | direct] [auto]
--socks5=value
SOCKS5 address [127.0.0.1:1080]
--socks5_password=value
SOCKS5 password
--socks5_username=value
SOCKS5 username
-u, --username=value
Run command as USERNAME handling setuid and/or setgid
--version Print the mgraftcp version information
-w, --whiteip-file=value
Only redirect the connect that destination IP/CIDR in the
white-ip-file to SOCKS5
graftcp-local
and mgraftcp
look for config file in following order:
- File provided as a
--config
argument $(the path of the executeable)/graftcp-local.conf
$(XDG_CONFIG_HOME)/graftcp-local/graftcp-local.conf
, If$XDG_CONFIG_HOME
is either not set or empty, a default equal to$HOME/.config
should be used./etc/graftcp-local/graftcp-local.conf
Assume you are running the SOCKS5 proxy with the default IP address: "localhost:1080". Start the graftcp-local
first:
local/graftcp-local
Install the Go package from golang.org (now is blocked by the GFW) via graftcp
:
./graftcp go get -v golang.org/x/net/proxy
Open Chromium
/ Chrome
/ Firefox
browser via graftcp
, then all the requests from this browser will redirect to the SOCKS5 proxy:
./graftcp chromium-browser
Launch Bash
/ Zsh
/ Fish
via graftcp
, then all the TCP traffic generated by the command in this shell will redirect to the SOCKS5 proxy:
% ./graftcp bash --rcfile <(echo 'PS1="(graftcp) $PS1"')
(graftcp) $ wget https://www.google.com
To achieve the goal of redirecting the TCP connection of a app to another destination address and the app itself is not aware of it, these conditions are probably required:
fork(2)
a new process and trace it usingptrace(2)
,execve(2)
to run the app. Everyconnect(2)
syscall will be intercepted, then get the destination address argument and send it tograftcp-local
viapipe
.- Modify the destination address argument of
connect(2)
tograftcp-local
's address, and restart the stopped syscall. After the syscall returns successfully, the app thought it has connected the original destination address, but in fact it is connected to thegraftcp-local
, so we named it "graft". graftcp-local
establish a SOCKS5 connection based on the information of app's original destination address, then redirect the requests from the app to the SOCKS5 proxy.
Someone may have a question here: since we can modify the arguments of a syscall, modify the app's write(2)
/ send(2)
buf argument, attach the original destination information to the write
buffer, isn't it simpler? The answer is that cannot be done. Because attach data to the buffer of the tracked child process, it may case a buffer overflow, causing crash or overwrite other data.
In addition, as the execve(2)
will detach and unmap all shared memory, we also cannot add extra data to the write
buffer of traced app by sharing memory, so we send the original destination address via pipe
.
The simple sketch is as follows:
+---------------+ +---------+ +--------+ +------+
| graftcp | dest host | | | | | |
| (tracer) +---PIPE----->| | | | | |
| ^ | info | | | | | |
| | ptrace | | | | | | |
| v | | | | | | |
| +---------+ | | | | | | |
| | | | connect | | connect | | connect | |
| | +--------------->| graftcp +-------->| SOCKS5 +-------->| dest |
| | | | | -local | | or | | host |
| | app | | req | | req | HTTP | req | |
| |(tracee) +--------------->| +-------->| proxy +-------->| |
| | | | | | | | | |
| | | | resp | | resp | | resp | |
| | |<---------------+ |<--------+ |<--------+ |
| +---------+ | | | | | | |
+---------------+ +---------+ +--------+ +------+
The main ones are: global way, environment variables setting way, and programs selection way.
Global way: e.g., use iptables
+ RedSocks
to convert the system's traffic that match certain rules into SOCKS5 traffic. The pros is that it is globally effective; the cons is that all traffic that satisfies the rule is redirected, and the scope of influence is large.
Environment variable setting: some programs will read the proxy-related environment variables to determine whether to convert their own traffic to the corresponding proxy protocol traffic, such as curl
will read http_proxy
, ftp_proxy
, all_proxy
Environment variables and decide which proxy traffic to convert based on the request URL scheme. This way is effective only if the program itself implements the traffic conversion function, so
it is very limited.
programs selection way: this way can only perform redirection for specified programs, such as tsocks
or proxychains
. As mentioned earlier, they were using the LD_PRELOAD
hijacking dynamic library function, and the default static link compiled program such as Go
is invalid. graftcp
improves this by being able to redirect TCP connections from any program.
No. By default, graftcp
ignore the connections to localhost. If you want to redirect all addresses, you can use the -n
option. If you want to ignore more addresses, you can add them to the blacklist IP file; if you want to redirect only certain IP addresses, you can add them to the whitelist IP file. Use graftcp --help
to get more information.
No. graftcp
currently only handles TCP connections. dnscrypt-proxy
or ChinaDNS
may help you.
The yay
command on Arch Linux actually invokes sudo pacman ...
, which requires the tracer to have root privileges to obtain permissions to trace the child process. You can start [m]graftcp
with sudo
and specify the current user to run the subsequent command: sudo [m]graftcp sudo -u $USER yay
, or sudo [m]graftcp -u $USER sudo ...
.
If you feel the above command too long, you can copy a [m]graftcp
binary with CAP_SYS_PTRACE and CAP_SYS_ADMIN capabilities:
cp mgraftcp sumg
sudo setcap 'cap_sys_ptrace,cap_sys_admin+ep' ./sumg
# ./sumg yay
# ./sumg sudo ...
The clone(2)
's argument has a flag CLONE_UNTRACED
to avoid being traced, how does graftcp
do forced tracing?
graftcp
will intercept the clone(2)
syscall, and clearing the CLONE_UNTRACED
flag, so the tracked child process could not escape the fate of being tracked. In addition, this CLONE_UNTRACED
flag is intended for the kernel, and user space program should not set it.
Linux provides a way to limit the ptrace(2)
: set the value of /proc/sys/kernel/yama/ptrace_scope
. If ptrace(2)
is invalid, check if the default value has been modified.
No. macOS's ptrace(2)
is useless. However, it can also be achieved theoretically by referring to . See issue 12.DTrace
- ARM/Linux Support
- i386/Linux Support
- UDP Support
- maybe, proxychains and proxychains-ng for inspiration
- strace
- uthash
- service
- dlog
Copyright © 2016, 2018-2024 Hmgle [email protected]
Released under the terms of the GNU General Public License, version 3