Skip to content

Implementation of "Deep Unsupervised Clustering Using Mixture of Autoencoders"

Notifications You must be signed in to change notification settings

icannos/mixture-autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mixture Autoencoder model

This is an implementation of the model described in this paper Mixture Autoencoder from https://arxiv.org/abs/1712.07788 by D.Zhang.

Usage

python3 src/main.py --input-train tests/clusters_norm_10_train.mat --training-steps 100 --classifier-topology 64 32 16 --num-clusters 3 --autoencoder-topology 64 32 16 8 --input-dim 8 --input-predict tests/clusters_norm_10_test_1.mat --output results.mat --autoencoders-activation tanh tanh tanh tanh

usage: Mixture Autoencoder model [-h] [--input-train INPUT_TRAIN]
                                 [--input-predict INPUT_PREDICT]
                                 [--output OUTPUT]
                                 [--save-model-file SAVE_MODEL_FILE]
                                 [--load-model-file LOAD_MODEL_FILE]
                                 [--training-steps TRAINING_STEPS]
                                 [--autoencoder-topology AUTOENCODER_TOPOLOGY [AUTOENCODER_TOPOLOGY ...]]
                                 [--classifier-topology CLASSIFIER_TOPOLOGY [CLASSIFIER_TOPOLOGY ...]]
                                 [--input-dim INPUT_DIM]
                                 [--num-clusters NUM_CLUSTERS]
                                 [--autoencoders-activation AUTOENCODERS_ACTIVATION [AUTOENCODERS_ACTIVATION ...]]
                                 [--entropy-strategy ENTROPY_STRATEGY]

optional arguments:
  -h, --help            show this help message and exit
  --input-train INPUT_TRAIN
                        .mat file to open. Should contain an X matrix
  --input-predict INPUT_PREDICT
                        .mat file to open. Should contain an X matrix
  --output OUTPUT       Where to store the results of the prediction of
                        X_test, the file will a contain aresults array.
  --save-model-file SAVE_MODEL_FILE
                        File to dump weights after training, if training steps
                        > 0
  --load-model-file LOAD_MODEL_FILE
                        File from which load weigths
  --training-steps TRAINING_STEPS
                        Number of training steps to perform
  --autoencoder-topology AUTOENCODER_TOPOLOGY [AUTOENCODER_TOPOLOGY ...]
                        Dimension of each hidden layer (only one side, the
                        rest is built by symetry
  --classifier-topology CLASSIFIER_TOPOLOGY [CLASSIFIER_TOPOLOGY ...]
                        Dimension of each hidden layer of the classifier
                        network
  --input-dim INPUT_DIM
                        dimension of an entry vector
  --num-clusters NUM_CLUSTERS
                        Number of expected clusters
  --autoencoders-activation AUTOENCODERS_ACTIVATION [AUTOENCODERS_ACTIVATION ...]
                        Name of the activation function. Available: tanh
                        sigmoid relu
  --entropy-strategy ENTROPY_STRATEGY
                        Strategy to use to define weights of sample entropy
                        and batch entropy

About

Implementation of "Deep Unsupervised Clustering Using Mixture of Autoencoders"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages