Skip to content

Latest commit

 

History

History
 
 

eval_tnt

Python Toolbox for Evaluation

This Python script evaluates training dataset of TanksAndTemples benchmark. The script requires Open3D and a few Python packages such as matplotlib, json, and numpy.

How to use:

Step 0. Reconstruct 3D models and recover camera poses from the training dataset. The raw videos of the training dataset can be found from: https://tanksandtemples.org/download/

Step 1. Download evaluation data (ground truth geometry + reference reconstruction) using this link. In this example, we regard TanksAndTemples/evaluation/data/ as a dataset folder.

Step 2. Install Open3D. Follow instructions in http://open3d.org/docs/getting_started.html

Step 3. Run the evaluation script and grab some coffee.

# firstly, run cull_mesh.py to cull mesh and then 
./run.sh Barn

Output (evaluation of Ignatius):

===========================
Evaluating Ignatius
===========================
path/to/TanksAndTemples/evaluation/data/Ignatius/Ignatius_COLMAP.ply
Reading PLY: [========================================] 100%
Read PointCloud: 6929586 vertices.
path/to/TanksAndTemples/evaluation/data/Ignatius/Ignatius.ply
Reading PLY: [========================================] 100%
:
ICP Iteration #0: Fitness 0.9980, RMSE 0.0044
ICP Iteration #1: Fitness 0.9980, RMSE 0.0043
ICP Iteration #2: Fitness 0.9980, RMSE 0.0043
ICP Iteration #3: Fitness 0.9980, RMSE 0.0043
ICP Iteration #4: Fitness 0.9980, RMSE 0.0042
ICP Iteration #5: Fitness 0.9980, RMSE 0.0042
ICP Iteration #6: Fitness 0.9979, RMSE 0.0042
ICP Iteration #7: Fitness 0.9979, RMSE 0.0042
ICP Iteration #8: Fitness 0.9979, RMSE 0.0042
ICP Iteration #9: Fitness 0.9979, RMSE 0.0042
ICP Iteration #10: Fitness 0.9979, RMSE 0.0042
[EvaluateHisto]
Cropping geometry: [========================================] 100%
Pointcloud down sampled from 6929586 points to 1449840 points.
Pointcloud down sampled from 1449840 points to 1365628 points.
path/to/TanksAndTemples/evaluation/data/Ignatius/evaluation//Ignatius.precision.ply
Cropping geometry: [========================================] 100%
Pointcloud down sampled from 5016769 points to 4957123 points.
Pointcloud down sampled from 4957123 points to 4181506 points.
[compute_point_cloud_to_point_cloud_distance]
[compute_point_cloud_to_point_cloud_distance]
:
[ViewDistances] Add color coding to visualize error
[ViewDistances] Add color coding to visualize error
:
[get_f1_score_histo2]
==============================
evaluation result : Ignatius
==============================
distance tau : 0.003
precision : 0.7679
recall : 0.7937
f-score : 0.7806
==============================

Step 5. Go to the evaluation folder. TanksAndTemples/evaluation/data/Ignatius/evaluation/ will have the following outputs.

PR_Ignatius_@d_th_0_0030.pdf (Precision and recall curves with a F-score)

Ignatius.precision.ply Ignatius.recall.ply

(3D visualization of precision and recall. Each mesh is color coded using hot colormap)

Requirements

  • Python 3
  • open3d v0.9.0
  • matplotlib