Skip to content

Image Polygonal Annotation with Python.

License

Notifications You must be signed in to change notification settings

johnwayne1995/labelme

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

labelme: Image Polygonal Annotation with Python

PyPI Version Travis Build Status Docker Build Status

Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.
It is written in Python and uses Qt for its graphical interface,
and supports annotations for semantic and instance segmentation.

Fig 1. Example of annotations for instance segmentation.

Requirements

Installation

There are options:

  • Platform agonistic installation: Anaconda, Docker
  • Platform specific installation: Ubuntu, macOS

Anaconda

You need install Anaconda, then run below:

# python2
conda create --name=labelme python=2.7
source activate labelme
conda install pyqt
pip install labelme
# if you'd like to use the latest version. run below:
# pip install git+https://github.com/wkentaro/labelme.git

# python3
conda create --name=labelme python=3.6
source activate labelme
# conda install pyqt
pip install pyqt5  # pyqt5 can be installed via pip on python3
pip install labelme

Docker

You need install docker, then run below:

wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/labelme_on_docker
chmod u+x labelme_on_docker

# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
labelme_on_docker examples/tutorial/apc2016_obj3.jpg -O examples/tutorial/apc2016_obj3.json
labelme_on_docker examples/semantic_segmentation/data_annotated

Ubuntu

# Ubuntu 14.04 / Ubuntu 16.04
# Python2
# sudo apt-get install python-qt4 pyqt4-dev-tools  # PyQt4
sudo apt-get install python-pyqt5 pyqt5-dev-tools  # PyQt5
sudo pip install labelme
# Python3
sudo apt-get install python3-pyqt5 pyqt5-dev-tools  # PyQt5
sudo pip3 install labelme

macOS

# macOS Sierra
brew install pyqt  # maybe pyqt5
pip install labelme  # both python2/3 should work

# or install standalone executable / app
brew install wkentaro/labelme/labelme
brew cask install wkentaro/labelme/labelme

Usage

Run labelme --help for detail.
The annotations are saved as a JSON file.

labelme  # just open gui

# tutorial (single image example)
cd examples/tutorial
labelme apc2016_obj3.jpg  # specify image file
labelme apc2016_obj3.jpg -O apc2016_obj3.json  # close window after the save
labelme apc2016_obj3.jpg --nodata  # not include image data but relative image path in JSON file
labelme apc2016_obj3.jpg \
  --labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball  # specify label list

# semantic segmentation example
cd examples/semantic_segmentation
labelme data_annotated/  # Open directory to annotate all images in it
labelme data_annotated/ --labels labels.txt  # specify label list with a file

For more advanced usage, please refer to the examples:

FAQ

Screencast

Testing

pip install hacking pytest pytest-qt
flake8 .
pytest -v tests

How to build standalone app

Below is an example on macOS, and there are pre-built apps in the release section.

git clone https://github.com/wkentaro/labelme.git
cd labelme

virtualenv venv --python /usr/local/bin/python3
. venv/bin/activate
pip install -e .
pip uninstall matplotlib
pip install pyinstaller

pyinstaller app.py \
  --onefile \
  --windowed \
  --name labelme \
  --icon labelme/icons/icon.icns \
  --specpath $(mktemp -d) \
  --noconfirm
open dist/labelme.app

Acknowledgement

This repo is the fork of mpitid/pylabelme, whose development has already stopped.

About

Image Polygonal Annotation with Python.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%