Skip to content

Commit

Permalink
hi# Please enter the commit message for your changes. Lines starting
Browse files Browse the repository at this point in the history
  • Loading branch information
jshtaway committed Oct 23, 2018
1 parent 6186420 commit ae14449
Show file tree
Hide file tree
Showing 2 changed files with 119 additions and 81 deletions.
156 changes: 106 additions & 50 deletions word_based.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -34,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -117,40 +117,6 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whosever room this is should be ashamed!\n",
"His underwear is hanging on the lamp.\n",
"His raincoat is there in the overstuffed chair,\n",
"And the chair is becoming quite mucky and damp.\n",
"His workbook is wedged in the window,\n",
"His sweater's been thrown on the floor.\n",
"His scarf and one ski are\n",
"\n"
]
}
],
"source": [
"# select a seed text\n",
"# seed_text = lines[randint(0,len(lines))]\n",
"seed_text = '''Whosever room this is should be ashamed!\n",
"His underwear is hanging on the lamp.\n",
"His raincoat is there in the overstuffed chair,\n",
"And the chair is becoming quite mucky and damp.\n",
"His workbook is wedged in the window,\n",
"His sweater's been thrown on the floor.\n",
"His scarf and one ski are'''\n",
"\n",
"print(seed_text + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# define model\n",
Expand Down Expand Up @@ -219,7 +185,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -267,12 +233,10 @@
"# {'model':'Flatten'},\n",
"# {'model': 'Dense','units':vocab_size,'activation':'softmax'},\n",
"# ]\n",
" modelList = [{'model':'Embedding', 'input_dim':vocab_size, 'output_dim': 256, 'input_length': seq_length},\n",
" {'model': 'LSTM', 'units':256, 'use_bias':True, 'dropout':.2, 'recurrent_dropout': 0, 'return_sequences': True}, \n",
" modelList = [{'model':'Embedding', 'input_dim':vocab_size, 'output_dim': 512, 'input_length': seq_length},\n",
" {'model': 'LSTM', 'units':512, 'use_bias':True, 'dropout':.2, 'recurrent_dropout': 0, 'return_sequences': True}, \n",
" {'model': 'Dense','units':100,'activation':'relu'}, \n",
" {'model': 'LSTM', 'units':256, 'use_bias':True, 'dropout':.2, 'recurrent_dropout': 0, 'return_sequences': True}, \n",
" {'model': 'Dense','units':100,'activation':'relu'}, \n",
" {'model': 'LSTM', 'units':256, 'use_bias':True, 'dropout':.2, 'recurrent_dropout': 0, 'return_sequences': True}, \n",
" {'model': 'LSTM', 'units':512, 'use_bias':True, 'dropout':.2, 'recurrent_dropout': 0, 'return_sequences': True}, \n",
" {'model': 'Dense','units':100,'activation':'relu'}, \n",
" {'model':'Flatten'},\n",
" {'model': 'Dense','units':vocab_size,'activation':'softmax'},\n",
Expand All @@ -295,7 +259,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -339,7 +303,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -358,12 +322,104 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['yertle', 'the', 'turtle', 'on', 'the', 'far', 'away', 'island', 'of', 'sala', 'ma', 'sond', 'yertle', 'the', 'turtle', 'was', 'king', 'of', 'the', 'pond.', 'a', 'nice', 'little', 'pond.', 'it', 'was', 'clean.', 'it', 'was', 'neat.', 'the', 'water', 'was', 'warm.', 'there', 'was', 'plenty', 'to', 'eat.', 'the', 'turtles', 'had', 'everything', 'turtles', 'might', 'need.', 'and', 'they', 'were', 'all', 'happy.', 'quite', 'happy', 'indeed.', 'they', 'were.', 'untill', 'yertle', 'the', 'king', 'of', 'them', 'all', 'decided', 'the', 'kingdom', 'he', 'ruled', 'was', 'too', 'small.', 'im', 'ruler', 'said', 'yertle', 'of', 'all', 'that', 'i', 'see.', 'but', 'i', 'dont', 'see', 'enough.', 'thats', 'the', 'trouble', 'with', 'me.', 'with', 'this', 'stone', 'for', 'a', 'throne', 'i', 'look', 'down', 'on']\n",
"Total Tokens: 16226\n",
"Unique Tokens: 2829\n",
"Total Sequences: 16175\n",
"sequences[0][0]: yertle\n",
"sequences:\n",
" 0 1 2 3 4 5 6 7 8 9 ... 41 42 \\\n",
"0 162 1 161 12 1 237 425 2828 9 876 ... 47 1360 \n",
"1 1 161 12 1 237 425 2828 9 876 502 ... 1360 214 \n",
"2 161 12 1 237 425 2828 9 876 502 1362 ... 214 873 \n",
"3 12 1 237 425 2828 9 876 502 1362 162 ... 873 641 \n",
"4 1 237 425 2828 9 876 502 1362 162 1 ... 641 2 \n",
"\n",
" 43 44 45 46 47 48 49 50 \n",
"0 214 873 641 2 15 78 16 1363 \n",
"1 873 641 2 15 78 16 1363 95 \n",
"2 641 2 15 78 16 1363 95 642 \n",
"3 2 15 78 16 1363 95 642 877 \n",
"4 15 78 16 1363 95 642 877 15 \n",
"\n",
"[5 rows x 51 columns]\n",
"seq_length: 50\n",
"shape of X: (16175, 50)\n",
"shape of y: (16175, 2830)\n",
"drseuss_text: 'data/combinedText.txt'\n",
"seed_length: 50\n",
"epochs: 50\n",
"batch_size: 128\n",
"modelList: [{'model': 'Embedding', 'input_dim': 2830, 'output_dim': 512, 'input_length': 50}, {'model': 'LSTM', 'units': 512, 'use_bias': True, 'dropout': 0.2, 'recurrent_dropout': 0, 'return_sequences': True}, {'model': 'Dense', 'units': 100, 'activation': 'relu'}, {'model': 'LSTM', 'units': 512, 'use_bias': True, 'dropout': 0.2, 'recurrent_dropout': 0, 'return_sequences': True}, {'model': 'Dense', 'units': 100, 'activation': 'relu'}, {'model': 'Flatten'}, {'model': 'Dense', 'units': 2830, 'activation': 'softmax'}]\n",
"model.add(Embedding(input_dim= 2830, output_dim=512, input_length=50))\n",
"model.add(LSTM(units=512, use_bias=True, dropout=0.2, recurrent_dropout=0 ))\n",
"model.add(Dense(units=100, activation=relu))\n",
"model.add(LSTM(units=512, use_bias=True, dropout=0.2, recurrent_dropout=0 ))\n",
"model.add(Dense(units=100, activation=relu))\n",
"model.add(Flatten())\n",
"model.add(Dense(units=2830, activation=softmax))\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"embedding_1 (Embedding) (None, 50, 512) 1448960 \n",
"_________________________________________________________________\n",
"lstm_1 (LSTM) (None, 50, 512) 2099200 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 50, 100) 51300 \n",
"_________________________________________________________________\n",
"lstm_2 (LSTM) (None, 50, 512) 1255424 \n",
"_________________________________________________________________\n",
"dense_2 (Dense) (None, 50, 100) 51300 \n",
"_________________________________________________________________\n",
"flatten_1 (Flatten) (None, 5000) 0 \n",
"_________________________________________________________________\n",
"dense_3 (Dense) (None, 2830) 14152830 \n",
"=================================================================\n",
"Total params: 19,059,014\n",
"Trainable params: 19,059,014\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n",
"None\n",
"Epoch 1/50\n",
" 128/16175 [..............................] - ETA: 14:44 - loss: 7.9478 - acc: 0.0000e+00"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-11-51c1a4b958c9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m__name__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'__main__'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtrainModelComplete\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-7-1f952b296c8c>\u001b[0m in \u001b[0;36mtrainModelComplete\u001b[0;34m(results_path)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mdump\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'token_'\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mmodelName\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m'.pkl'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;31m#-- Fit model -- ---- --- --- --- ---- --- --- ---- --- --- --- --- --- --- --- ---\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0mhistory_callback\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodelFit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodelName\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseq_length\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresults_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;31m#-- Save history and final model --- -\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mwriteFiles\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodelName\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhistory_callback\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodelList\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseq_length\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequences\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresults_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-4-b4547fb07441>\u001b[0m in \u001b[0;36mmodelFit\u001b[0;34m(model, modelName, X, y, seq_length, batch_size, epochs, results_path)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# fit model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0mhistory_callback\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallbacks_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mhistory_callback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/anaconda3/lib/python3.6/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1035\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1036\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1037\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1038\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1039\u001b[0m def evaluate(self, x=None, y=None,\n",
"\u001b[0;32m/anaconda3/lib/python3.6/site-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2664\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legacy_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2665\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2666\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2667\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2668\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2634\u001b[0m \u001b[0msymbol_vals\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2635\u001b[0m session)\n\u001b[0;32m-> 2636\u001b[0;31m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2637\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfetched\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2638\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1397\u001b[0m ret = tf_session.TF_SessionRunCallable(\n\u001b[1;32m 1398\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstatus\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1399\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 1400\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1401\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"if __name__ == '__main__':\n",
" trainModelComplete()"
" trainModelComplete('.')"
]
},
{
Expand All @@ -377,7 +433,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -423,7 +479,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
Expand Down
Loading

0 comments on commit ae14449

Please sign in to comment.