-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Julian
committed
Apr 24, 2018
1 parent
a08ea33
commit 05b0243
Showing
7 changed files
with
410 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
[32m[0424 03:21:19 @logger.py:57][0m Argv: syq-alexnet.py --data /mnt/ds3lab/ImageNet/ --num-epochs 56 84 120 --learning-rate 1e-4 2e-5 4e-6 --eta 0.0 --gpu 0 | ||
[32m[0424 03:21:19 @utils.py:60][0m TENSORPACK_DATASET not set, using /home/faraonej/xilinx-tensorpack/tensorpack/dataflow/dataset for dataset. | ||
[32m[0424 03:21:32 @multigpu.py:32][0m Training a model of 1 tower | ||
[32m[0424 03:21:32 @multigpu.py:40][0m Building graph for training tower 0... | ||
[32m[0424 03:21:32 @_common.py:72][0m conv0 input: [None, 224, 224, 3] | ||
[32m[0424 03:21:32 @_common.py:80][0m conv0 output: [None, 54, 54, 96] | ||
[32m[0424 03:21:32 @_common.py:72][0m conv1 input: [None, 54, 54, 96] | ||
[32m[0424 03:21:33 @_common.py:80][0m conv1 output: [None, 54, 54, 256] | ||
[32m[0424 03:21:33 @_common.py:72][0m pool1 input: [None, 54, 54, 256] | ||
[32m[0424 03:21:33 @_common.py:80][0m pool1 output: [None, 27, 27, 256] | ||
[32m[0424 03:21:33 @_common.py:72][0m conv2 input: [None, 27, 27, 256] | ||
[32m[0424 03:21:33 @_common.py:80][0m conv2 output: [None, 27, 27, 384] | ||
[32m[0424 03:21:33 @_common.py:72][0m pool2 input: [None, 27, 27, 384] | ||
[32m[0424 03:21:33 @_common.py:80][0m pool2 output: [None, 14, 14, 384] | ||
[32m[0424 03:21:33 @_common.py:72][0m conv3 input: [None, 14, 14, 384] | ||
[32m[0424 03:21:33 @_common.py:80][0m conv3 output: [None, 14, 14, 384] | ||
[32m[0424 03:21:33 @_common.py:72][0m conv4 input: [None, 14, 14, 384] | ||
[32m[0424 03:21:33 @_common.py:80][0m conv4 output: [None, 14, 14, 256] | ||
[32m[0424 03:21:33 @_common.py:72][0m pool4 input: [None, 14, 14, 256] | ||
[32m[0424 03:21:33 @_common.py:80][0m pool4 output: [None, 6, 6, 256] | ||
[32m[0424 03:21:33 @_common.py:72][0m fc0 input: [None, 6, 6, 256] | ||
[32m[0424 03:21:33 @_common.py:80][0m fc0 output: [None, 4096] | ||
[32m[0424 03:21:33 @_common.py:72][0m fc1 input: [None, 1, 1, 4096] | ||
[32m[0424 03:21:33 @_common.py:80][0m fc1 output: [None, 4096] | ||
[32m[0424 03:21:33 @_common.py:72][0m fct input: [None, 1, 1, 4096] | ||
[32m[0424 03:21:33 @_common.py:80][0m fct output: [None, 1000] | ||
[32m[0424 03:21:33 @regularize.py:17][0m Apply regularizer for fc0/W:0 | ||
[32m[0424 03:21:33 @regularize.py:17][0m Apply regularizer for fc0/Wn:0 | ||
[32m[0424 03:21:33 @regularize.py:17][0m Apply regularizer for fc1/W:0 | ||
[32m[0424 03:21:33 @regularize.py:17][0m Apply regularizer for fc1/Wn:0 | ||
[32m[0424 03:21:33 @regularize.py:17][0m Apply regularizer for fct/W:0 | ||
[32m[0424 03:21:35 @modelutils.py:26][0m [36mModel Parameters: [0m | ||
conv0/W:0: shape=[12, 12, 3, 96], dim=41472 | ||
conv1/W:0: shape=[5, 5, 48, 256], dim=307200 | ||
conv1/Ws:0: shape=[25, 1], dim=25 | ||
bn1/beta:0: shape=[256], dim=256 | ||
bn1/gamma:0: shape=[256], dim=256 | ||
conv2/W:0: shape=[3, 3, 256, 384], dim=884736 | ||
conv2/Ws:0: shape=[9, 1], dim=9 | ||
bn2/beta:0: shape=[384], dim=384 | ||
bn2/gamma:0: shape=[384], dim=384 | ||
conv3/W:0: shape=[3, 3, 192, 384], dim=663552 | ||
conv3/Ws:0: shape=[9, 1], dim=9 | ||
bn3/beta:0: shape=[384], dim=384 | ||
bn3/gamma:0: shape=[384], dim=384 | ||
conv4/W:0: shape=[3, 3, 192, 256], dim=442368 | ||
conv4/Ws:0: shape=[9, 1], dim=9 | ||
bn4/beta:0: shape=[256], dim=256 | ||
bn4/gamma:0: shape=[256], dim=256 | ||
fc0/W:0: shape=[9216, 4096], dim=37748736 | ||
fc0/Wn:0: shape=[], dim=1 | ||
bnfc0/beta:0: shape=[4096], dim=4096 | ||
bnfc0/gamma:0: shape=[4096], dim=4096 | ||
fc1/W:0: shape=[4096, 4096], dim=16777216 | ||
fc1/Wn:0: shape=[], dim=1 | ||
bnfc1/beta:0: shape=[4096], dim=4096 | ||
bnfc1/gamma:0: shape=[4096], dim=4096 | ||
fct/W:0: shape=[4096, 1000], dim=4096000 | ||
fct/b:0: shape=[1000], dim=1000 | ||
[36mTotal param=60981278 (232.625114 MB assuming all float32)[0m | ||
[32m[0424 03:21:35 @base.py:110][0m Setup callbacks ... | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top1/EMA:0 renamed to train-error-top1/EMA:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top5/EMA:0 renamed to train-error-top5/EMA:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cross_entropy_loss/EMA:0 renamed to cross_entropy_loss/EMA:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/AddN/EMA:0 renamed to AddN/EMA:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cost/EMA:0 renamed to cost/EMA:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top1/EMA/biased:0 renamed to train-error-top1/EMA/biased:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top1/EMA/local_step:0 renamed to train-error-top1/EMA/local_step:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top5/EMA/biased:0 renamed to train-error-top5/EMA/biased:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/train-error-top5/EMA/local_step:0 renamed to train-error-top5/EMA/local_step:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cross_entropy_loss/EMA/biased:0 renamed to cross_entropy_loss/EMA/biased:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cross_entropy_loss/EMA/local_step:0 renamed to cross_entropy_loss/EMA/local_step:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/AddN/EMA/biased:0 renamed to AddN/EMA/biased:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/AddN/EMA/local_step:0 renamed to AddN/EMA/local_step:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cost/EMA/biased:0 renamed to cost/EMA/biased:0 when saving model. | ||
[32m[0424 03:21:35 @saver.py:63][0m [ModelSaver] tower0/cost/EMA/local_step:0 renamed to cost/EMA/local_step:0 when saving model. | ||
[32m[0424 03:21:35 @base.py:111][0m Building graph for predictor tower 0... | ||
[32m[0424 03:21:37 @base.py:120][0m Initializing graph variables ... | ||
[32m[0424 03:21:39 @concurrency.py:24][0m Starting EnqueueThread | ||
[32m[0424 03:21:39 @base.py:142][0m Start training with global_step=0 | ||
[32m[0424 03:21:48 @input_data.py:85][0m [4m[5m[31mERR[0m Exception in EnqueueThread: | ||
Traceback (most recent call last): | ||
File "/home/faraonej/xilinx-tensorpack/tensorpack/train/input_data.py", line 76, in run | ||
for dp in self.dataflow.get_data(): | ||
File "/home/faraonej/xilinx-tensorpack/tensorpack/dataflow/prefetch.py", line 155, in get_data | ||
dp = loads(self.socket.recv(copy=False).bytes) | ||
File "zmq/backend/cython/socket.pyx", line 693, in zmq.backend.cython.socket.Socket.recv (zmq/backend/cython/socket.c:7683) | ||
File "zmq/backend/cython/socket.pyx", line 729, in zmq.backend.cython.socket.Socket.recv (zmq/backend/cython/socket.c:7486) | ||
File "zmq/backend/cython/socket.pyx", line 129, in zmq.backend.cython.socket._recv_frame (zmq/backend/cython/socket.c:2093) | ||
File "zmq/backend/cython/checkrc.pxd", line 22, in zmq.backend.cython.checkrc._check_rc (zmq/backend/cython/socket.c:9923) | ||
raise ContextTerminated(errno) | ||
ContextTerminated: Context was terminated | ||
[32m[0424 03:21:48 @input_data.py:92][0m Enqueue Thread Exited. |
Oops, something went wrong.