Skip to content

jzystc/graph-learn

 
 

Repository files navigation

简体中文 | English

GL

graph-learn CI License

介绍

Graph-Learn(GL) 是面向大规模图神经网络的研发和应用而设计的一款分布式框架, 它从实际问题出发,提炼和抽象了一套适合于当下图神经网络模型的编程范式, 并已经成功应用在阿里巴巴内部的诸如搜索推荐、网络安全、知识图谱等众多场景。

GL注重可移植可扩展,对于开发者更为友好,为了应对GNN在工业场景中的多样性和快速发展的需求。 基于GL,开发者可以实现一种GNN算法,或者面向实际场景定制化一种图算子,例如图采样。 GL的接口以Python和NumPy的形式提供,可与TensorFlow或PyTorch兼容但不耦合。 目前GL内置了一些结合TensorFlow开发的经典模型,供用户参考。 GL可运行于Docker内或物理机上,支持单机和分布式两种部署模式。

用户文档

   数据源

   图对象

   图查询

   图遍历

   图采样

   负采样

   图采样语言

   算法编程范式

   自定义算法

   自定义算子

   数据源接入

  • 模型示例

   GCN

   GAT

   GraphSAGE

   Bipartite GraphSAGE

   DeepWalk

   LINE

   TransE

论文

如果GL对你的工作有所帮助,请引用如下论文。

@article{zhu2019aligraph,
  title={AliGraph: a comprehensive graph neural network platform},
  author={Zhu, Rong and Zhao, Kun and Yang, Hongxia and Lin, Wei and Zhou, Chang and Ai, Baole and Li, Yong and Zhou, Jingren},
  journal={Proceedings of the VLDB Endowment},
  volume={12},
  number={12},
  pages={2094--2105},
  year={2019},
  publisher={VLDB Endowment}
}

协议

Apache License 2.0。

致谢

GL孵化于阿里巴巴内部,由计算平台事业部-PAI团队、新零售智能引擎-智能计算实验室、安全部-数据与算法团队共同研发。 研发过程中收到很多有价值的反馈,代码也依赖了以下开源社区的优秀项目,一并感谢。

如果你在使用GL过程中遇到什么问题,请留言或发信至[email protected],也欢迎贡献代码。

Releases

No releases published

Packages

No packages published

Languages

  • C++ 70.6%
  • Python 26.7%
  • Makefile 1.4%
  • CMake 1.1%
  • Other 0.2%