forked from dexsuite/dex-retargeting
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
191 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
from pathlib import Path | ||
import multiprocessing | ||
import time | ||
import cv2 | ||
from loguru import logger | ||
import numpy as np | ||
import sapien | ||
from sapien.asset import create_dome_envmap | ||
from sapien.utils import Viewer | ||
|
||
from dex_retargeting.constants import RobotName, RetargetingType, HandType, get_default_config_path | ||
from dex_retargeting.retargeting_config import RetargetingConfig | ||
from dex_retargeting.seq_retarget import SeqRetargeting | ||
from single_hand_detector import SingleHandDetector | ||
|
||
|
||
def start_retargeting(queue: multiprocessing.Queue, robot_dir:str, config_path: str, robot_name:str): | ||
RetargetingConfig.set_default_urdf_dir(str(robot_dir)) | ||
logger.info(f"Start retargeting with config {config_path}") | ||
retargeting = RetargetingConfig.load_from_file(config_path).build() | ||
detector = SingleHandDetector(hand_type="Right", selfie=False) | ||
|
||
# init show ui | ||
meta_data = { | ||
"dof": len(retargeting.optimizer.robot.dof_joint_names), | ||
"joint_names":retargeting.optimizer.robot.dof_joint_names, | ||
} | ||
|
||
headless = False | ||
if not headless: | ||
sapien.render.set_viewer_shader_dir("default") | ||
sapien.render.set_camera_shader_dir("default") | ||
else: | ||
sapien.render.set_viewer_shader_dir("rt") | ||
sapien.render.set_camera_shader_dir("rt") | ||
sapien.render.set_ray_tracing_samples_per_pixel(16) | ||
sapien.render.set_ray_tracing_path_depth(8) | ||
sapien.render.set_ray_tracing_denoiser("oidn") | ||
|
||
config = RetargetingConfig.load_from_file(config_path) | ||
|
||
# Setup | ||
scene = sapien.Scene() | ||
|
||
# Ground | ||
render_mat = sapien.render.RenderMaterial() | ||
render_mat.base_color = [0.06, 0.08, 0.12, 1] | ||
render_mat.metallic = 0.0 | ||
render_mat.roughness = 0.9 | ||
render_mat.specular = 0.8 | ||
scene.add_ground(-0.2, render_material=render_mat, render_half_size=[1000, 1000]) | ||
|
||
# Lighting | ||
scene.add_directional_light(np.array([1, 1, -1]), np.array([3, 3, 3])) | ||
scene.add_point_light(np.array([2, 2, 2]), np.array([2, 2, 2]), shadow=False) | ||
scene.add_point_light(np.array([2, -2, 2]), np.array([2, 2, 2]), shadow=False) | ||
scene.set_environment_map(create_dome_envmap(sky_color=[0.2, 0.2, 0.2], ground_color=[0.2, 0.2, 0.2])) | ||
scene.add_area_light_for_ray_tracing(sapien.Pose([2, 1, 2], [0.707, 0, 0.707, 0]), np.array([1, 1, 1]), 5, 5) | ||
|
||
# Camera | ||
cam = scene.add_camera(name="Cheese!", width=600, height=600, fovy=1, near=0.1, far=10) | ||
cam.set_local_pose(sapien.Pose([0.50, 0, 0.0], [0, 0, 0, -1])) | ||
|
||
|
||
viewer = Viewer() | ||
viewer.set_scene(scene) | ||
viewer.control_window.show_origin_frame = False | ||
viewer.control_window.move_speed = 0.01 | ||
viewer.control_window.toggle_camera_lines(False) | ||
viewer.set_camera_pose(cam.get_local_pose()) | ||
|
||
# Load robot and set it to a good pose to take picture | ||
loader = scene.create_urdf_loader() | ||
filepath = Path(config.urdf_path) | ||
robot_name = filepath.stem | ||
loader.load_multiple_collisions_from_file = True | ||
if "ability" in robot_name: | ||
loader.scale = 1.5 | ||
elif "dclaw" in robot_name: | ||
loader.scale = 1.25 | ||
elif "allegro" in robot_name: | ||
loader.scale = 1.4 | ||
elif "shadow" in robot_name: | ||
loader.scale = 0.9 | ||
elif "bhand" in robot_name: | ||
loader.scale = 1.5 | ||
elif "leap" in robot_name: | ||
loader.scale = 1.4 | ||
elif "svh" in robot_name: | ||
loader.scale = 1.5 | ||
|
||
|
||
if "glb" not in robot_name: | ||
filepath = str(filepath).replace(".urdf", "_glb.urdf") | ||
else: | ||
filepath = str(filepath) | ||
|
||
robot = loader.load(filepath) | ||
|
||
if "ability" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.15])) | ||
elif "shadow" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.2])) | ||
elif "dclaw" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.15])) | ||
elif "allegro" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.05])) | ||
elif "bhand" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.2])) | ||
elif "leap" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.15])) | ||
elif "svh" in robot_name: | ||
robot.set_pose(sapien.Pose([0, 0, -0.13])) | ||
|
||
# Different robot loader may have different orders for joints | ||
sapien_joint_names = [joint.get_name() for joint in robot.get_active_joints()] | ||
retargeting_joint_names = meta_data["joint_names"] | ||
retargeting_to_sapien = np.array([retargeting_joint_names.index(name) for name in sapien_joint_names]).astype(int) | ||
|
||
for _ in range(2): | ||
viewer.render() | ||
|
||
while True: | ||
rgb = queue.get() | ||
if rgb is None: | ||
time.sleep(.1) | ||
continue | ||
|
||
_, joint_pos, _, _ = detector.detect(rgb) | ||
logger.info("join pos {}", joint_pos) | ||
if joint_pos is None: | ||
continue | ||
|
||
retargeting_type = retargeting.optimizer.retargeting_type | ||
indices = retargeting.optimizer.target_link_human_indices | ||
if retargeting_type == "POSITION": | ||
indices = indices | ||
ref_value = joint_pos[indices, :] | ||
else: | ||
origin_indices = indices[0, :] | ||
task_indices = indices[1, :] | ||
ref_value = joint_pos[task_indices, :] - joint_pos[origin_indices, :] | ||
qpos = retargeting.retarget(ref_value) | ||
logger.info(f"qpos {qpos}") | ||
robot.set_qpos((qpos)[retargeting_to_sapien]) | ||
|
||
for _ in range(2): | ||
viewer.render() | ||
|
||
|
||
def produce_frame(queue: multiprocessing.Queue): | ||
cap = cv2.VideoCapture(0) | ||
while cap.isOpened(): | ||
success, image = cap.read() | ||
if not success: | ||
continue | ||
frame = image | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
queue.put(image) | ||
time.sleep(.2) | ||
cv2.imshow('demo', frame) | ||
|
||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
|
||
|
||
def main(): | ||
robot_name: RobotName = RobotName.allegro | ||
retargeting_type: RetargetingType = RetargetingType.vector | ||
hand_type: HandType = HandType.right | ||
|
||
config_path = get_default_config_path(robot_name, retargeting_type, hand_type) | ||
robot_dir = Path(__file__).absolute().parent.parent.parent / "assets" / "robots" / "hands" | ||
|
||
queue = multiprocessing.Queue(maxsize=1000) | ||
producer_process = multiprocessing.Process(target=produce_frame, args=(queue,)) | ||
consumer_process = multiprocessing.Process(target=start_retargeting, args=(queue, str(robot_dir), str(config_path), robot_name)) | ||
|
||
producer_process.start() | ||
consumer_process.start() | ||
|
||
producer_process.join() | ||
consumer_process.join() | ||
time.sleep(5) | ||
|
||
print("done") | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -25,6 +25,7 @@ | |
"anytree", | ||
"pyyaml", | ||
"lxml", | ||
"loguru", | ||
] | ||
|
||
# Check whether you have torch installed | ||
|