Skip to content

Commit

Permalink
Merge pull request UM-ARM-Lab#43 from StoneT2000/add-ik-test-cases
Browse files Browse the repository at this point in the history
Add IK Test Cases for Non serial chains
  • Loading branch information
LemonPi authored Aug 29, 2024
2 parents f661187 + bdb1853 commit b744dd0
Showing 1 changed file with 28 additions and 18 deletions.
46 changes: 28 additions & 18 deletions tests/test_inverse_kinematics.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,16 +24,27 @@ def make_transparent(link):
for link in visual_data:
make_transparent(link)


def test_jacobian_follower():
def create_test_chain(robot="kuka_iiwa", device="cpu"):
if robot == "kuka_iiwa":
urdf = "kuka_iiwa/model.urdf"
search_path = pybullet_data.getDataPath()
full_urdf = os.path.join(search_path, urdf)
chain = pk.build_serial_chain_from_urdf(open(full_urdf).read(), "lbr_iiwa_link_7")
chain = chain.to(device=device)
elif robot == "widowx":
urdf = "widowx/wx250s.urdf"
full_urdf = urdf
chain = pk.build_serial_chain_from_urdf(open(full_urdf, "rb").read(), "ee_gripper_link")
chain = chain.to(device=device)
else:
raise NotImplementedError(f"Robot {robot} not implemented")
return chain, urdf

def test_jacobian_follower(robot="kuka_iiwa"):
pytorch_seed.seed(2)
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
urdf = "kuka_iiwa/model.urdf"
search_path = pybullet_data.getDataPath()
full_urdf = os.path.join(search_path, urdf)
chain = pk.build_serial_chain_from_urdf(open(full_urdf).read(), "lbr_iiwa_link_7")
chain = chain.to(device=device)
chain, urdf = create_test_chain(robot=robot, device=device)

# robot frame
pos = torch.tensor([0.0, 0.0, 0.0], device=device)
Expand All @@ -45,7 +56,7 @@ def test_jacobian_follower():
# generate random goal joint angles (so these are all achievable)
# use the joint limits to generate random joint angles
lim = torch.tensor(chain.get_joint_limits(), device=device)
goal_q = torch.rand(M, 7, device=device) * (lim[1] - lim[0]) + lim[0]
goal_q = torch.rand(M, lim.shape[1], device=device) * (lim[1] - lim[0]) + lim[0]

# get ee pose (in robot frame)
goal_in_rob_frame_tf = chain.forward_kinematics(goal_q)
Expand Down Expand Up @@ -159,24 +170,19 @@ def test_jacobian_follower():
p.stepSimulation()


def test_ik_in_place_no_err():
def test_ik_in_place_no_err(robot="kuka_iiwa"):
pytorch_seed.seed(2)
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
urdf = "kuka_iiwa/model.urdf"
search_path = pybullet_data.getDataPath()
full_urdf = os.path.join(search_path, urdf)
chain = pk.build_serial_chain_from_urdf(open(full_urdf).read(), "lbr_iiwa_link_7")
chain = chain.to(device=device)

chain, urdf = create_test_chain(robot=robot, device=device)
# robot frame
pos = torch.tensor([0.0, 0.0, 0.0], device=device)
rot = torch.tensor([0.0, 0.0, 0.0], device=device)
rob_tf = pk.Transform3d(pos=pos, rot=rot, device=device)

# goal equal to current configuration
lim = torch.tensor(chain.get_joint_limits(), device=device)
cur_q = torch.rand(7, device=device) * (lim[1] - lim[0]) + lim[0]
cur_q = torch.rand(lim.shape[1], device=device) * (lim[1] - lim[0]) + lim[0]
M = 1
goal_q = cur_q.unsqueeze(0).repeat(M, 1)

Expand Down Expand Up @@ -209,5 +215,9 @@ def test_ik_in_place_no_err():


if __name__ == "__main__":
test_jacobian_follower()
test_ik_in_place_no_err()
print("Testing kuka_iiwa IK")
test_jacobian_follower(robot="kuka_iiwa")
test_ik_in_place_no_err(robot="kuka_iiwa")
print("Testing widowx IK")
test_jacobian_follower(robot="widowx")
test_ik_in_place_no_err(robot="widowx")

0 comments on commit b744dd0

Please sign in to comment.