forked from graykode/nlp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
graykode#57 (refactor) update above pytorch 1.0.0 with refactoring code
- Loading branch information
Showing
12 changed files
with
625 additions
and
685 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,93 +1,82 @@ | ||
''' | ||
code by Tae Hwan Jung(Jeff Jung) @graykode | ||
''' | ||
# %% | ||
# code by Tae Hwan Jung @graykode | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.autograd import Variable | ||
import matplotlib.pyplot as plt | ||
|
||
dtype = torch.FloatTensor | ||
|
||
# 3 Words Sentence | ||
sentences = [ "i like dog", "i like cat", "i like animal", | ||
"dog cat animal", "apple cat dog like", "dog fish milk like", | ||
"dog cat eyes like", "i like apple", "apple i hate", | ||
"apple i movie book music like", "cat dog hate", "cat dog like"] | ||
|
||
word_sequence = " ".join(sentences).split() | ||
word_list = " ".join(sentences).split() | ||
word_list = list(set(word_list)) | ||
word_dict = {w: i for i, w in enumerate(word_list)} | ||
|
||
# Word2Vec Parameter | ||
batch_size = 20 # To show 2 dim embedding graph | ||
embedding_size = 2 # To show 2 dim embedding graph | ||
voc_size = len(word_list) | ||
|
||
def random_batch(data, size): | ||
def random_batch(): | ||
random_inputs = [] | ||
random_labels = [] | ||
random_index = np.random.choice(range(len(data)), size, replace=False) | ||
random_index = np.random.choice(range(len(skip_grams)), batch_size, replace=False) | ||
|
||
for i in random_index: | ||
random_inputs.append(np.eye(voc_size)[data[i][0]]) # target | ||
random_labels.append(data[i][1]) # context word | ||
random_inputs.append(np.eye(voc_size)[skip_grams[i][0]]) # target | ||
random_labels.append(skip_grams[i][1]) # context word | ||
|
||
return random_inputs, random_labels | ||
|
||
# Make skip gram of one size window | ||
skip_grams = [] | ||
for i in range(1, len(word_sequence) - 1): | ||
target = word_dict[word_sequence[i]] | ||
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]] | ||
|
||
for w in context: | ||
skip_grams.append([target, w]) | ||
|
||
# Model | ||
class Word2Vec(nn.Module): | ||
def __init__(self): | ||
super(Word2Vec, self).__init__() | ||
|
||
# W and WT is not Traspose relationship | ||
self.W = nn.Parameter(-2 * torch.rand(voc_size, embedding_size) + 1).type(dtype) # voc_size > embedding_size Weight | ||
self.WT = nn.Parameter(-2 * torch.rand(embedding_size, voc_size) + 1).type(dtype) # embedding_size > voc_size Weight | ||
self.W = nn.Linear(voc_size, embedding_size, bias=False) # voc_size > embedding_size Weight | ||
self.WT = nn.Linear(embedding_size, voc_size, bias=False) # embedding_size > voc_size Weight | ||
|
||
def forward(self, X): | ||
# X : [batch_size, voc_size] | ||
hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size] | ||
output_layer = torch.matmul(hidden_layer, self.WT) # output_layer : [batch_size, voc_size] | ||
hidden_layer = self.W(X) # hidden_layer : [batch_size, embedding_size] | ||
output_layer = self.WT(hidden_layer) # output_layer : [batch_size, voc_size] | ||
return output_layer | ||
|
||
model = Word2Vec() | ||
|
||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
# Training | ||
for epoch in range(5000): | ||
|
||
input_batch, target_batch = random_batch(skip_grams, batch_size) | ||
|
||
input_batch = Variable(torch.Tensor(input_batch)) | ||
target_batch = Variable(torch.LongTensor(target_batch)) | ||
|
||
optimizer.zero_grad() | ||
output = model(input_batch) | ||
|
||
# output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot) | ||
loss = criterion(output, target_batch) | ||
if (epoch + 1)%1000 == 0: | ||
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
for i, label in enumerate(word_list): | ||
W, WT = model.parameters() | ||
x,y = float(W[i][0]), float(W[i][1]) | ||
plt.scatter(x, y) | ||
plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') | ||
plt.show() | ||
if __name__ == '__main__': | ||
batch_size = 2 # mini-batch size | ||
embedding_size = 2 # embedding size | ||
|
||
sentences = ["apple banana fruit", "banana orange fruit", "orange banana fruit", | ||
"dog cat animal", "cat monkey animal", "monkey dog animal"] | ||
|
||
word_sequence = " ".join(sentences).split() | ||
word_list = " ".join(sentences).split() | ||
word_list = list(set(word_list)) | ||
word_dict = {w: i for i, w in enumerate(word_list)} | ||
voc_size = len(word_list) | ||
|
||
# Make skip gram of one size window | ||
skip_grams = [] | ||
for i in range(1, len(word_sequence) - 1): | ||
target = word_dict[word_sequence[i]] | ||
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]] | ||
for w in context: | ||
skip_grams.append([target, w]) | ||
|
||
model = Word2Vec() | ||
|
||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
# Training | ||
for epoch in range(5000): | ||
input_batch, target_batch = random_batch() | ||
input_batch = torch.Tensor(input_batch) | ||
target_batch = torch.LongTensor(target_batch) | ||
|
||
optimizer.zero_grad() | ||
output = model(input_batch) | ||
|
||
# output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot) | ||
loss = criterion(output, target_batch) | ||
if (epoch + 1) % 1000 == 0: | ||
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
for i, label in enumerate(word_list): | ||
W, WT = model.parameters() | ||
x, y = W[0][i].item(), W[1][i].item() | ||
plt.scatter(x, y) | ||
plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') | ||
plt.show() |
Oops, something went wrong.