forked from rasbt/python-machine-learning-book-3rd-edition
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added ch18 codes: gridworld example * Added ch18 codes: cartpole example
- Loading branch information
Showing
4 changed files
with
488 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import gym | ||
import numpy as np | ||
import tensorflow as tf | ||
import random | ||
from collections import namedtuple | ||
from collections import deque | ||
|
||
np.random.seed(1) | ||
tf.random.set_seed(1) | ||
|
||
Transition = namedtuple( | ||
'Transition', ('state', 'action', 'reward', | ||
'next_state', 'done')) | ||
|
||
|
||
class DQNAgent: | ||
def __init__( | ||
self, env, discount_factor=0.95, | ||
epsilon_greedy=1.0, epsilon_min=0.01, | ||
epsilon_decay=0.995, learning_rate=1e-3, | ||
max_memory_size=2000): | ||
self.enf = env | ||
self.state_size = env.observation_space.shape[0] | ||
self.action_size = env.action_space.n | ||
|
||
self.memory = deque(maxlen=max_memory_size) | ||
|
||
self.gamma = discount_factor | ||
self.epsilon = epsilon_greedy | ||
self.epsilon_min = epsilon_min | ||
self.epsilon_decay = epsilon_decay | ||
self.lr = learning_rate | ||
self._build_nn_model() | ||
|
||
def _build_nn_model(self, n_layers=3): | ||
self.model = tf.keras.Sequential() | ||
|
||
## Hidden layers | ||
for n in range(n_layers - 1): | ||
self.model.add(tf.keras.layers.Dense( | ||
units=32, activation='relu')) | ||
self.model.add(tf.keras.layers.Dense( | ||
units=32, activation='relu')) | ||
|
||
## Last layer | ||
self.model.add(tf.keras.layers.Dense( | ||
units=self.action_size)) | ||
|
||
## Build & compile model | ||
self.model.build(input_shape=(None, self.state_size)) | ||
self.model.compile( | ||
loss='mse', | ||
optimizer=tf.keras.optimizers.Adam(lr=self.lr)) | ||
|
||
def remember(self, transition): | ||
self.memory.append(transition) | ||
|
||
def choose_action(self, state): | ||
if np.random.rand() <= self.epsilon: | ||
return random.randrange(self.action_size) | ||
q_values = self.model.predict(state)[0] | ||
return np.argmax(q_values) # returns action | ||
|
||
def _learn(self, batch_samples): | ||
batch_states, batch_targets = [], [] | ||
for transition in batch_samples: | ||
s, a, r, next_s, done = transition | ||
if done: | ||
target = r | ||
else: | ||
target = (r + | ||
self.gamma * np.amax( | ||
self.model.predict(next_s)[0] | ||
) | ||
) | ||
target_all = self.model.predict(s)[0] | ||
target_all[a] = target | ||
batch_states.append(s.flatten()) | ||
batch_targets.append(target_all) | ||
self._adjust_epsilon() | ||
return self.model.fit(x=np.array(batch_states), | ||
y=np.array(batch_targets), | ||
epochs=1, | ||
verbose=0) | ||
|
||
def _adjust_epsilon(self): | ||
if self.epsilon > self.epsilon_min: | ||
self.epsilon *= self.epsilon_decay | ||
|
||
def replay(self, batch_size): | ||
samples = random.sample(self.memory, batch_size) | ||
history = self._learn(samples) | ||
return history.history['loss'][0] | ||
|
||
def plot_learning_history(history): | ||
fig = plt.figure(1, figsize=(14, 5)) | ||
ax = fig.add_subplot(1, 1, 1) | ||
episodes = np.arange(len(history[0])) + 1 | ||
plt.plot(episodes, history[0], lw=4, | ||
marker='o', markersize=10) | ||
ax.tick_params(axis='both', which='major', labelsize=15) | ||
plt.xlabel('Episodes', size=20) | ||
plt.ylabel('# Total Rewards', size=20) | ||
plt.show() | ||
|
||
|
||
## General settings | ||
EPISODES = 200 | ||
batch_size = 32 | ||
init_replay_memory_size = 500 | ||
|
||
if __name__ == '__main__': | ||
env = gym.make('CartPole-v1') | ||
agent = DQNAgent(env) | ||
state = env.reset() | ||
state = np.reshape(state, [1, agent.state_size]) | ||
|
||
## Filling up the replay-memory | ||
for i in range(init_replay_memory_size): | ||
action = agent.choose_action(state) | ||
next_state, reward, done, _ = env.step(action) | ||
next_state = np.reshape(next_state, [1, agent.state_size]) | ||
agent.remember(Transition(state, action, reward, | ||
next_state, done)) | ||
if done: | ||
state = env.reset() | ||
state = np.reshape(state, [1, agent.state_size]) | ||
else: | ||
state = next_state | ||
|
||
total_rewards, losses = [], [] | ||
for e in range(EPISODES): | ||
state = env.reset() | ||
if e % 10 == 0: | ||
env.render() | ||
state = np.reshape(state, [1, agent.state_size]) | ||
for i in range(500): | ||
action = agent.choose_action(state) | ||
next_state, reward, done, _ = env.step(action) | ||
next_state = np.reshape(next_state, | ||
[1, agent.state_size]) | ||
agent.remember(Transition(state, action, reward, | ||
next_state, done)) | ||
state = next_state | ||
if e % 10 == 0: | ||
env.render() | ||
if done: | ||
total_rewards.append(i) | ||
print('Episode: %d/%d, Total reward: %d' | ||
% (e, EPISODES, i)) | ||
break | ||
loss = agent.replay(batch_size) | ||
losses.append(loss) | ||
plot_learning_history((total_rewards, losses)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
## Script: agent.py | ||
|
||
from collections import defaultdict | ||
import numpy as np | ||
|
||
|
||
class Agent(object): | ||
def __init__( | ||
self, env, | ||
learning_rate=0.01, | ||
discount_factor=0.9, | ||
epsilon_greedy=0.9, | ||
epsilon_min=0.1, | ||
epsilon_decay=0.95): | ||
self.env = env | ||
self.lr = learning_rate | ||
self.gamma = discount_factor | ||
self.epsilon = epsilon_greedy | ||
self.epsilon_min = epsilon_min | ||
self.epsilon_decay = epsilon_decay | ||
|
||
## Define the q_table | ||
self.q_table = defaultdict(lambda: np.zeros(self.env.nA)) | ||
|
||
def choose_action(self, state): | ||
if np.random.uniform() < self.epsilon: | ||
action = np.random.choice(self.env.nA) | ||
else: | ||
q_vals = self.q_table[state] | ||
perm_actions = np.random.permutation(self.env.nA) | ||
q_vals = [q_vals[a] for a in perm_actions] | ||
perm_q_argmax = np.argmax(q_vals) | ||
action = perm_actions[perm_q_argmax] | ||
return action | ||
|
||
def _learn(self, transition): | ||
s, a, r, next_s, done = transition | ||
q_val = self.q_table[s][a] | ||
if done: | ||
q_target = r | ||
else: | ||
q_target = r + self.gamma*np.max(self.q_table[next_s]) | ||
|
||
## Update the q_table | ||
self.q_table[s][a] += self.lr * (q_target - q_val) | ||
|
||
## Adjust the epislon | ||
self._adjust_epsilon() | ||
|
||
def _adjust_epsilon(self): | ||
if self.epsilon > self.epsilon_min: | ||
self.epsilon *= self.epsilon_decay |
Oops, something went wrong.