Pytorch Implementation of [EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks]
We use the NTU120 RGB+D dataset as an example for description. We need to first dowload the NTU120-RGB+D dataset
- Process the data
cd ./data/ntu
# Get skeleton of each performer
python get_raw_skes_data.py
# Remove the bad skeleton
python get_raw_denoised_data.py
# Transform the skeleton to the center of the first frame
python seq_transformation.py
# 3 att
python gru.py --aug 0 --experiment att3_gru0 --print_freq 500 --batch_size 256 --lr 0.005 --train 1 --max_epoches 100 --att 3
python gru.py --aug 0 --experiment att3_gru0 --print_freq 500 --batch_size 256 --lr 0.005 --train 0 --max_epoches 1 --att 3
# 0 att
python gru.py --aug 0 --experiment att0_gru3 --print_freq 500 --batch_size 256 --lr 0.005 --train 1 --max_epoches 100
python gru.py --aug 0 --experiment att0_gru3 --print_freq 500 --batch_size 256 --lr 0.005 --train 0 --max_epoches 1
# 1 att
python gru.py --aug 0 --experiment att1_gru2 --print_freq 500 --batch_size 256 --lr 0.005 --train 1 --max_epoches 100 --att 1
python gru.py --aug 0 --experiment att1_gru2 --print_freq 500 --batch_size 256 --lr 0.005 --train 0 --max_epoches 1 --att 1
# 2 att
python gru.py --aug 0 --experiment att2_gru1 --print_freq 500 --batch_size 256 --lr 0.005 --train 1 --max_epoches 100 --att 2
python gru.py --aug 0 --experiment att2_gru1 --print_freq 500 --batch_size 256 --lr 0.005 --train 0 --max_epoches 1 --att 2
#With generated attention response
#create skeleton instance
sk = Draw3DSkeleton(file=data_from_net, save_path=path_test_result, is_file_txt=False)
#set generated relative attention response
sk.set_relative_response(attention_response=attention_response, arrange_required=True)
#visualize the skeleton with attention in a 3D plot
sk.visual_skeleton_animate(use_relative_response=True, scattersize_max=300, sleep_time=0.1, is_image_save=True, skeleton_color='r', joint_color='blue')
#With constant(aritificial) attention
#create skeleton instance
sk_plain = Draw3DSkeleton(file=attention_response, save_path=path_rest_result_plain, is_file_txt=False)
#set constant attention response
sk_plain.set_relative_response(attention_response=None, arrange_required=False)
#visualize the skeleton with attention in a 3D plot
sk_plain.visual_skeleton_animate(use_relative_response=True, scattersize_max=50, sleep_time=0.5, is_image_save=True, skeleton_color='r', joint_color='blue')
1. P. Zhang, J. Xue, C. Lan, W. Zeng, Z. Gao, and N. Zheng, “EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks,” IEEE Transactions on Image Processing, vol. 29, pp. 1061–1073, 2020.
2. J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot, “NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 10, pp. 2684–2701, 2020.
3. A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
4. P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “microsoft/View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,” GitHub. [Online]. Available: https://github.com/microsoft/View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition. [Accessed: 18-Dec-2020].
5. A. Paszke et al., "Pytorch: An imperative style high-performance deep learning library", Proc. Adv. Neural Inf. Process. Syst., pp. 8026-8037, 2019.
6. Enriccorona, “enriccorona/human-motion-prediction-pytorch,” GitHub. [Online]. Available: https://github.com/enriccorona/human-motion-prediction-pytorch. [Accessed: 18-Dec-2020].
7. XiaoCode-er, “XiaoCode-er/3D-Skeleton-Display,” GitHub. [Online]. Available: https://github.com/XiaoCode-er/3D-Skeleton-Display. [Accessed: 18-Dec-2020].