Morteza Ghahremani, Mohammad Khateri, Alejandra Sierra, Jussi Tohka
AiVi, UEF, Finland
This repository is the official implementation of ADL: Adversarial Distortion Learning for denoising medical and computer vision images (arxiv, supp, pretrained models, visual results).
TensorFlow | PyTorch |
---|
ADL achieves state-of-the-art Gaussian denoising performance in
- grayscale/color image denoising in Medical imaging 🔥🔥🔥
- grayscale/color image denoising in Computer Vision images 🔥🔥🔥
- JPEG compression artifact reduction 🔥🔥🔥
- grayscale/color deblurring 🔥🔥🔥
- Proposed Efficient-UNet (Denoiser)
- Proposed Efficient-UNet (Discriminator)
- Results on the BSD68 dataset for Additive white Gaussian noise:
σ | BM3D | WNNM | DnCNN | NLRN | FOCNet | MWCNN | DRUNet | SwinIR | ADL (ours) |
---|---|---|---|---|---|---|---|---|---|
15 | 31.08 | 31.37 | 31.73 | 31.88 | 31.83 | 31.86 | 31.91 | 31.97 | 🔥 32.11 🔥 |
25 | 28.57 | 28.83 | 29.23 | 29.41 | 29.38 | 29.41 | 29.48 | 29.50 | 🔥 29.50 🔥 |
50 | 25.60 | 25.87 | 26.23 | 26.47 | 26.50 | 26.53 | 26.59 | 26.58 | 🔥 26.87 🔥 |
- Here we reported the results of the techniques reported by the authors.
- Our ADL was trained on the grey Flickr2K dataset only!
CBSD68 (img_id: test015) | Noisy (σ=25) | SwinIR | ADL (ours) |
---|---|---|---|
- Results on the CBSD68 dataset for Additive white Gaussian noise:
σ | BM3D | WNNM | EPLL | MLP | CSF | TNRD | DnCNN | DRUNet | SwinIR | ADL (ours) |
---|---|---|---|---|---|---|---|---|---|---|
15 | 33.52 | 33.90 | 33.86 | 33.87 | 33.91 | - | 34.10 | 34.30 | 34.42 | 🔥 34.61 🔥 |
25 | 30.71 | 31.24 | 31.16 | 31.21 | 31.28 | 31.24 | 31.43 | 31.69 | 31.78 | 🔥 32.18 🔥 |
50 | 27.38 | 27.95 | 27.86 | 27.96 | 28.05 | 28.06 | 28.16 | 28.51 | 28.56 | 🔥 29.02 🔥 |
CBSD68 (img_id: test015) | Noisy (σ=50) | SwinIR | ADL (ours) |
---|---|---|---|
If you find ADL useful in your research, please cite our tech report:
@article{ADL2022,
author = {Morteza Ghahremani, Mohammad Khateri, Alejandra Sierra, Jussi Tohka},
title = {Adversarial Distortion Learning for Medical Image Denoising},
journal = {arXiv:2204.14100},
year = {2022},
}