Skip to content

mogvision/ADL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PWC PWC PWC PWC PWC PWC PWC

ADL: Adversarial Distortion Learning for Denoising and Distortion Removal

Morteza Ghahremani, Mohammad Khateri, Alejandra Sierra, Jussi Tohka

AiVi, UEF, Finland


This repository is the official implementation of ADL: Adversarial Distortion Learning for denoising medical and computer vision images (arxiv, supp, pretrained models, visual results).

TensorFlow PyTorch google colab logo


ADL achieves state-of-the-art Gaussian denoising performance in

  • grayscale/color image denoising in Medical imaging 🔥🔥🔥
  • grayscale/color image denoising in Computer Vision images 🔥🔥🔥
  • JPEG compression artifact reduction 🔥🔥🔥
  • grayscale/color deblurring 🔥🔥🔥

Network architectures

  • Proposed Efficient-UNet (Denoiser)

  • Proposed Efficient-UNet (Discriminator)

______________

Denoising Results on BSD68 and CBSD68:

  • Results on the BSD68 dataset for Additive white Gaussian noise:
σ BM3D WNNM DnCNN NLRN FOCNet MWCNN DRUNet SwinIR ADL (ours)
15 31.08 31.37 31.73 31.88 31.83 31.86 31.91 31.97 🔥 32.11 🔥
25 28.57 28.83 29.23 29.41 29.38 29.41 29.48 29.50 🔥 29.50 🔥
50 25.60 25.87 26.23 26.47 26.50 26.53 26.59 26.58 🔥 26.87 🔥
  • Here we reported the results of the techniques reported by the authors.
  • Our ADL was trained on the grey Flickr2K dataset only!
CBSD68 (img_id: test015) Noisy (σ=25) SwinIR ADL (ours)
  • Results on the CBSD68 dataset for Additive white Gaussian noise:
σ BM3D WNNM EPLL MLP CSF TNRD DnCNN DRUNet SwinIR ADL (ours)
15 33.52 33.90 33.86 33.87 33.91 - 34.10 34.30 34.42 🔥 34.61 🔥
25 30.71 31.24 31.16 31.21 31.28 31.24 31.43 31.69 31.78 🔥 32.18 🔥
50 27.38 27.95 27.86 27.96 28.05 28.06 28.16 28.51 28.56 🔥 29.02 🔥
CBSD68 (img_id: test015) Noisy (σ=50) SwinIR ADL (ours)

Denoising Results on Medical Images:

2D (click here)

3D MRI Brain-BrainWeb (click here)

3D MRI knee-fastMRI (click here)


Citation

If you find ADL useful in your research, please cite our tech report:

@article{ADL2022,
    author = {Morteza Ghahremani, Mohammad Khateri, Alejandra Sierra, Jussi Tohka},
    title = {Adversarial Distortion Learning for Medical Image Denoising},
    journal = {arXiv:2204.14100},
    year = {2022},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published