-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
unsupervised learning & memory optimizations
- Loading branch information
Showing
10 changed files
with
1,822 additions
and
984 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -323,4 +323,6 @@ out | |
netin | ||
netout | ||
|
||
libs | ||
libs | ||
|
||
**.h5 |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
"""Utilities for real-time data augmentation on image data. | ||
https://raw.githubusercontent.com/keras-team/keras-preprocessing/master/keras_preprocessing/image/numpy_array_iterator.py | ||
modified with no numpy array copying | ||
""" | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
import warnings | ||
import numpy as np | ||
import random | ||
|
||
import tensorflow as tf | ||
|
||
from keras.preprocessing.image import Iterator | ||
from keras.preprocessing.image import array_to_img | ||
|
||
|
||
class NumpyArrayIterator(Iterator): | ||
"""Iterator yielding data from a Numpy array. | ||
# Arguments | ||
x: Numpy array of input data or tuple. | ||
If tuple, the second elements is either | ||
another numpy array or a list of numpy arrays, | ||
each of which gets passed | ||
through as an output without any modifications. | ||
y: Numpy array of targets data. | ||
image_data_generator: Instance of `ImageDataGenerator` | ||
to use for random transformations and normalization. | ||
batch_size: Integer, size of a batch. | ||
shuffle: Boolean, whether to shuffle the data between epochs. | ||
sample_weight: Numpy array of sample weights. | ||
seed: Random seed for data shuffling. | ||
data_format: String, one of `channels_first`, `channels_last`. | ||
save_to_dir: Optional directory where to save the pictures | ||
being yielded, in a viewable format. This is useful | ||
for visualizing the random transformations being | ||
applied, for debugging purposes. | ||
save_prefix: String prefix to use for saving sample | ||
images (if `save_to_dir` is set). | ||
save_format: Format to use for saving sample images | ||
(if `save_to_dir` is set). | ||
subset: Subset of data (`"training"` or `"validation"`) if | ||
validation_split is set in ImageDataGenerator. | ||
ignore_class_split: Boolean (default: False), ignore difference | ||
in number of classes in labels across train and validation | ||
split (useful for non-classification tasks) | ||
dtype: Dtype to use for the generated arrays. | ||
""" | ||
|
||
def __new__(cls, *args, **kwargs): | ||
try: | ||
from tensorflow.keras.utils import Sequence as TFSequence | ||
if TFSequence not in cls.__bases__: | ||
cls.__bases__ = cls.__bases__ + (TFSequence,) | ||
except ImportError: | ||
pass | ||
return super(NumpyArrayIterator, cls).__new__(cls) | ||
|
||
def __init__(self, | ||
x, | ||
y, | ||
image_data_generator, | ||
batch_size=32, | ||
shuffle=False, | ||
sample_weight=None, | ||
seed=None, | ||
data_format='channels_last', | ||
save_to_dir=None, | ||
save_prefix='', | ||
save_format='png', | ||
subset=None, | ||
ignore_class_split=False, | ||
dtype='float32', | ||
transform_img=lambda x: x): | ||
self.dtype = dtype | ||
if (type(x) is tuple) or (type(x) is list): | ||
if type(x[1]) is not list: | ||
x_misc = [np.asarray(x[1])] | ||
else: | ||
x_misc = [np.asarray(xx) for xx in x[1]] | ||
x = x[0] | ||
for xx in x_misc: | ||
if len(x) != len(xx): | ||
raise ValueError( | ||
'All of the arrays in `x` ' | ||
'should have the same length. ' | ||
'Found a pair with: len(x[0]) = %s, len(x[?]) = %s' % | ||
(len(x), len(xx))) | ||
else: | ||
x_misc = [] | ||
|
||
if y is not None and len(x) != len(y): | ||
raise ValueError('`x` (images tensor) and `y` (labels) ' | ||
'should have the same length. ' | ||
'Found: x.shape = %s, y.shape = %s' % | ||
(np.asarray(x).shape, np.asarray(y).shape)) | ||
if sample_weight is not None and len(x) != len(sample_weight): | ||
raise ValueError('`x` (images tensor) and `sample_weight` ' | ||
'should have the same length. ' | ||
'Found: x.shape = %s, sample_weight.shape = %s' % | ||
(np.asarray(x).shape, np.asarray(sample_weight).shape)) | ||
if subset is not None: | ||
if subset not in {'training', 'validation'}: | ||
raise ValueError('Invalid subset name:', subset, | ||
'; expected "training" or "validation".') | ||
split_idx = int(len(x) * image_data_generator._validation_split) | ||
|
||
if (y is not None and not ignore_class_split and not | ||
np.array_equal(np.unique(y[:split_idx]), | ||
np.unique(y[split_idx:]))): | ||
raise ValueError('Training and validation subsets ' | ||
'have different number of classes after ' | ||
'the split. If your numpy arrays are ' | ||
'sorted by the label, you might want ' | ||
'to shuffle them.') | ||
|
||
if subset == 'validation': | ||
x = x[:split_idx] | ||
x_misc = [np.asarray(xx[:split_idx]) for xx in x_misc] | ||
if y is not None: | ||
y = y[:split_idx] | ||
else: | ||
x = x[split_idx:] | ||
x_misc = [np.asarray(xx[split_idx:]) for xx in x_misc] | ||
if y is not None: | ||
y = y[split_idx:] | ||
|
||
# self.x = np.asarray(x, dtype=self.dtype) | ||
self.x = x | ||
self.x_misc = x_misc | ||
if self.x.ndim != 4: | ||
raise ValueError('Input data in `NumpyArrayIterator` ' | ||
'should have rank 4. You passed an array ' | ||
'with shape', self.x.shape) | ||
channels_axis = 3 if data_format == 'channels_last' else 1 | ||
if self.x.shape[channels_axis] not in {1, 3, 4}: | ||
warnings.warn('NumpyArrayIterator is set to use the ' | ||
'data format convention "' + data_format + '" ' | ||
'(channels on axis ' + str(channels_axis) + | ||
'), i.e. expected either 1, 3, or 4 ' | ||
'channels on axis ' + str(channels_axis) + '. ' | ||
'However, it was passed an array with shape ' + | ||
str(self.x.shape) + ' (' + | ||
str(self.x.shape[channels_axis]) + ' channels).') | ||
if y is not None: | ||
# self.y = np.asarray(y) | ||
self.y = y | ||
else: | ||
self.y = None | ||
if sample_weight is not None: | ||
self.sample_weight = np.asarray(sample_weight) | ||
else: | ||
self.sample_weight = None | ||
self.image_data_generator = image_data_generator | ||
self.data_format = data_format | ||
self.save_to_dir = save_to_dir | ||
self.save_prefix = save_prefix | ||
self.save_format = save_format | ||
self.transform_img = transform_img | ||
super(NumpyArrayIterator, self).__init__(x.shape[0], | ||
batch_size, | ||
shuffle, | ||
seed) | ||
|
||
def _get_batches_of_transformed_samples(self, index_array): | ||
batch_x = np.zeros(tuple([len(index_array)] + list(self.x.shape)[1:]), | ||
dtype=self.dtype) | ||
batch_y = np.zeros(tuple([len(index_array)] + list(self.y.shape)[1:]), | ||
dtype=self.dtype) | ||
for i, j in enumerate(index_array): | ||
rseed = random.randint(0, 1000000) | ||
x = self.x[j] | ||
y = self.y[j] | ||
params = self.image_data_generator.get_random_transform(x.shape, seed = rseed) | ||
params_y = self.image_data_generator.get_random_transform(y.shape, seed = rseed) | ||
x = self.image_data_generator.apply_transform( | ||
x.astype(self.dtype), params) | ||
# x = self.image_data_generator.standardize(x) | ||
x = self.transform_img(x) | ||
y = self.image_data_generator.apply_transform( | ||
y.astype(self.dtype), params_y) | ||
# y = self.image_data_generator.standardize(y) | ||
y = self.transform_img(y) | ||
batch_x[i] = x | ||
batch_y[i] = y | ||
|
||
batch_x_miscs = [xx[index_array] for xx in self.x_misc] | ||
output = (batch_x if batch_x_miscs == [] | ||
else [batch_x] + batch_x_miscs,) | ||
if self.y is None: | ||
return output[0] | ||
output += (batch_y,) | ||
if self.sample_weight is not None: | ||
output += (self.sample_weight[index_array],) | ||
return output |
Oops, something went wrong.