-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathaugment.py
441 lines (379 loc) · 26.3 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Augmentation pipeline from the paper
"Training Generative Adversarial Networks with Limited Data".
Matches the original implementation by Karras et al. at
https://github.com/NVlabs/stylegan2-ada/blob/main/training/augment.py"""
import numpy as np
import scipy.signal
import torch
from torch_utils import persistence
from torch_utils import misc
from torch_utils.ops import upfirdn2d
from torch_utils.ops import grid_sample_gradfix
from torch_utils.ops import conv2d_gradfix
#----------------------------------------------------------------------------
# Coefficients of various wavelet decomposition low-pass filters.
wavelets = {
'haar': [0.7071067811865476, 0.7071067811865476],
'db1': [0.7071067811865476, 0.7071067811865476],
'db2': [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025],
'db3': [0.035226291882100656, -0.08544127388224149, -0.13501102001039084, 0.4598775021193313, 0.8068915093133388, 0.3326705529509569],
'db4': [-0.010597401784997278, 0.032883011666982945, 0.030841381835986965, -0.18703481171888114, -0.02798376941698385, 0.6308807679295904, 0.7148465705525415, 0.23037781330885523],
'db5': [0.003335725285001549, -0.012580751999015526, -0.006241490213011705, 0.07757149384006515, -0.03224486958502952, -0.24229488706619015, 0.13842814590110342, 0.7243085284385744, 0.6038292697974729, 0.160102397974125],
'db6': [-0.00107730108499558, 0.004777257511010651, 0.0005538422009938016, -0.031582039318031156, 0.02752286553001629, 0.09750160558707936, -0.12976686756709563, -0.22626469396516913, 0.3152503517092432, 0.7511339080215775, 0.4946238903983854, 0.11154074335008017],
'db7': [0.0003537138000010399, -0.0018016407039998328, 0.00042957797300470274, 0.012550998556013784, -0.01657454163101562, -0.03802993693503463, 0.0806126091510659, 0.07130921926705004, -0.22403618499416572, -0.14390600392910627, 0.4697822874053586, 0.7291320908465551, 0.39653931948230575, 0.07785205408506236],
'db8': [-0.00011747678400228192, 0.0006754494059985568, -0.0003917403729959771, -0.00487035299301066, 0.008746094047015655, 0.013981027917015516, -0.04408825393106472, -0.01736930100202211, 0.128747426620186, 0.00047248457399797254, -0.2840155429624281, -0.015829105256023893, 0.5853546836548691, 0.6756307362980128, 0.3128715909144659, 0.05441584224308161],
'sym2': [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025],
'sym3': [0.035226291882100656, -0.08544127388224149, -0.13501102001039084, 0.4598775021193313, 0.8068915093133388, 0.3326705529509569],
'sym4': [-0.07576571478927333, -0.02963552764599851, 0.49761866763201545, 0.8037387518059161, 0.29785779560527736, -0.09921954357684722, -0.012603967262037833, 0.0322231006040427],
'sym5': [0.027333068345077982, 0.029519490925774643, -0.039134249302383094, 0.1993975339773936, 0.7234076904024206, 0.6339789634582119, 0.01660210576452232, -0.17532808990845047, -0.021101834024758855, 0.019538882735286728],
'sym6': [0.015404109327027373, 0.0034907120842174702, -0.11799011114819057, -0.048311742585633, 0.4910559419267466, 0.787641141030194, 0.3379294217276218, -0.07263752278646252, -0.021060292512300564, 0.04472490177066578, 0.0017677118642428036, -0.007800708325034148],
'sym7': [0.002681814568257878, -0.0010473848886829163, -0.01263630340325193, 0.03051551316596357, 0.0678926935013727, -0.049552834937127255, 0.017441255086855827, 0.5361019170917628, 0.767764317003164, 0.2886296317515146, -0.14004724044296152, -0.10780823770381774, 0.004010244871533663, 0.010268176708511255],
'sym8': [-0.0033824159510061256, -0.0005421323317911481, 0.03169508781149298, 0.007607487324917605, -0.1432942383508097, -0.061273359067658524, 0.4813596512583722, 0.7771857517005235, 0.3644418948353314, -0.05194583810770904, -0.027219029917056003, 0.049137179673607506, 0.003808752013890615, -0.01495225833704823, -0.0003029205147213668, 0.0018899503327594609],
}
#----------------------------------------------------------------------------
# Helpers for constructing transformation matrices.
def matrix(*rows, device=None):
assert all(len(row) == len(rows[0]) for row in rows)
elems = [x for row in rows for x in row]
ref = [x for x in elems if isinstance(x, torch.Tensor)]
if len(ref) == 0:
return misc.constant(np.asarray(rows), device=device)
assert device is None or device == ref[0].device
elems = [x if isinstance(x, torch.Tensor) else misc.constant(x, shape=ref[0].shape, device=ref[0].device) for x in elems]
return torch.stack(elems, dim=-1).reshape(ref[0].shape + (len(rows), -1))
def translate2d(tx, ty, **kwargs):
return matrix(
[1, 0, tx],
[0, 1, ty],
[0, 0, 1],
**kwargs)
def translate3d(tx, ty, tz, **kwargs):
return matrix(
[1, 0, 0, tx],
[0, 1, 0, ty],
[0, 0, 1, tz],
[0, 0, 0, 1],
**kwargs)
def scale2d(sx, sy, **kwargs):
return matrix(
[sx, 0, 0],
[0, sy, 0],
[0, 0, 1],
**kwargs)
def scale3d(sx, sy, sz, **kwargs):
return matrix(
[sx, 0, 0, 0],
[0, sy, 0, 0],
[0, 0, sz, 0],
[0, 0, 0, 1],
**kwargs)
def rotate2d(theta, **kwargs):
return matrix(
[torch.cos(theta), torch.sin(-theta), 0],
[torch.sin(theta), torch.cos(theta), 0],
[0, 0, 1],
**kwargs)
def rotate3d(v, theta, **kwargs):
vx = v[..., 0]; vy = v[..., 1]; vz = v[..., 2]
s = torch.sin(theta); c = torch.cos(theta); cc = 1 - c
return matrix(
[vx*vx*cc+c, vx*vy*cc-vz*s, vx*vz*cc+vy*s, 0],
[vy*vx*cc+vz*s, vy*vy*cc+c, vy*vz*cc-vx*s, 0],
[vz*vx*cc-vy*s, vz*vy*cc+vx*s, vz*vz*cc+c, 0],
[0, 0, 0, 1],
**kwargs)
def translate2d_inv(tx, ty, **kwargs):
return translate2d(-tx, -ty, **kwargs)
def scale2d_inv(sx, sy, **kwargs):
return scale2d(1 / sx, 1 / sy, **kwargs)
def rotate2d_inv(theta, **kwargs):
return rotate2d(-theta, **kwargs)
#----------------------------------------------------------------------------
# Versatile image augmentation pipeline from the paper
# "Training Generative Adversarial Networks with Limited Data".
#
# All augmentations are disabled by default; individual augmentations can
# be enabled by setting their probability multipliers to 1.
@persistence.persistent_class
class AugmentPipe(torch.nn.Module):
def __init__(self,
xflip=0, rotate90=0, xint=0, xint_max=0.125,
scale=0, rotate=0, aniso=0, xfrac=0, scale_std=0.2, rotate_max=1, aniso_std=0.2, xfrac_std=0.125,
brightness=0, contrast=0, lumaflip=0, hue=0, saturation=0, brightness_std=0.2, contrast_std=0.5, hue_max=1, saturation_std=1,
imgfilter=0, imgfilter_bands=[1,1,1,1], imgfilter_std=1,
noise=0, cutout=0, noise_std=0.1, cutout_size=0.5,
):
super().__init__()
self.register_buffer('p', torch.ones([])) # Overall multiplier for augmentation probability.
# Pixel blitting.
self.xflip = float(xflip) # Probability multiplier for x-flip.
self.rotate90 = float(rotate90) # Probability multiplier for 90 degree rotations.
self.xint = float(xint) # Probability multiplier for integer translation.
self.xint_max = float(xint_max) # Range of integer translation, relative to image dimensions.
# General geometric transformations.
self.scale = float(scale) # Probability multiplier for isotropic scaling.
self.rotate = float(rotate) # Probability multiplier for arbitrary rotation.
self.aniso = float(aniso) # Probability multiplier for anisotropic scaling.
self.xfrac = float(xfrac) # Probability multiplier for fractional translation.
self.scale_std = float(scale_std) # Log2 standard deviation of isotropic scaling.
self.rotate_max = float(rotate_max) # Range of arbitrary rotation, 1 = full circle.
self.aniso_std = float(aniso_std) # Log2 standard deviation of anisotropic scaling.
self.xfrac_std = float(xfrac_std) # Standard deviation of frational translation, relative to image dimensions.
# Color transformations.
self.brightness = float(brightness) # Probability multiplier for brightness.
self.contrast = float(contrast) # Probability multiplier for contrast.
self.lumaflip = float(lumaflip) # Probability multiplier for luma flip.
self.hue = float(hue) # Probability multiplier for hue rotation.
self.saturation = float(saturation) # Probability multiplier for saturation.
self.brightness_std = float(brightness_std) # Standard deviation of brightness.
self.contrast_std = float(contrast_std) # Log2 standard deviation of contrast.
self.hue_max = float(hue_max) # Range of hue rotation, 1 = full circle.
self.saturation_std = float(saturation_std) # Log2 standard deviation of saturation.
# Image-space filtering.
self.imgfilter = float(imgfilter) # Probability multiplier for image-space filtering.
self.imgfilter_bands = list(imgfilter_bands) # Probability multipliers for individual frequency bands.
self.imgfilter_std = float(imgfilter_std) # Log2 standard deviation of image-space filter amplification.
# Image-space corruptions.
self.noise = float(noise) # Probability multiplier for additive RGB noise.
self.cutout = float(cutout) # Probability multiplier for cutout.
self.noise_std = float(noise_std) # Standard deviation of additive RGB noise.
self.cutout_size = float(cutout_size) # Size of the cutout rectangle, relative to image dimensions.
# Setup orthogonal lowpass filter for geometric augmentations.
self.register_buffer('Hz_geom', upfirdn2d.setup_filter(wavelets['sym6']))
# Construct filter bank for image-space filtering.
Hz_lo = np.asarray(wavelets['sym2']) # H(z)
Hz_hi = Hz_lo * ((-1) ** np.arange(Hz_lo.size)) # H(-z)
Hz_lo2 = np.convolve(Hz_lo, Hz_lo[::-1]) / 2 # H(z) * H(z^-1) / 2
Hz_hi2 = np.convolve(Hz_hi, Hz_hi[::-1]) / 2 # H(-z) * H(-z^-1) / 2
Hz_fbank = np.eye(4, 1) # Bandpass(H(z), b_i)
for i in range(1, Hz_fbank.shape[0]):
Hz_fbank = np.dstack([Hz_fbank, np.zeros_like(Hz_fbank)]).reshape(Hz_fbank.shape[0], -1)[:, :-1]
Hz_fbank = scipy.signal.convolve(Hz_fbank, [Hz_lo2])
Hz_fbank[i, (Hz_fbank.shape[1] - Hz_hi2.size) // 2 : (Hz_fbank.shape[1] + Hz_hi2.size) // 2] += Hz_hi2
self.register_buffer('Hz_fbank', torch.as_tensor(Hz_fbank, dtype=torch.float32))
def forward(self, images, debug_percentile=None):
assert isinstance(images, torch.Tensor) and images.ndim == 4
batch_size, num_channels, height, width = images.shape
device = images.device
if debug_percentile is not None:
debug_percentile = torch.as_tensor(debug_percentile, dtype=torch.float32, device=device)
# -------------------------------------
# Select parameters for pixel blitting.
# -------------------------------------
# Initialize inverse homogeneous 2D transform: G_inv @ pixel_out ==> pixel_in
I_3 = torch.eye(3, device=device)
G_inv = I_3
# Apply x-flip with probability (xflip * strength).
if self.xflip > 0:
i = torch.floor(torch.rand([batch_size], device=device) * 2)
i = torch.where(torch.rand([batch_size], device=device) < self.xflip * self.p, i, torch.zeros_like(i))
if debug_percentile is not None:
i = torch.full_like(i, torch.floor(debug_percentile * 2))
G_inv = G_inv @ scale2d_inv(1 - 2 * i, 1)
# Apply 90 degree rotations with probability (rotate90 * strength).
if self.rotate90 > 0:
i = torch.floor(torch.rand([batch_size], device=device) * 4)
i = torch.where(torch.rand([batch_size], device=device) < self.rotate90 * self.p, i, torch.zeros_like(i))
if debug_percentile is not None:
i = torch.full_like(i, torch.floor(debug_percentile * 4))
G_inv = G_inv @ rotate2d_inv(-np.pi / 2 * i)
# Apply integer translation with probability (xint * strength).
if self.xint > 0:
t = (torch.rand([batch_size, 2], device=device) * 2 - 1) * self.xint_max
t = torch.where(torch.rand([batch_size, 1], device=device) < self.xint * self.p, t, torch.zeros_like(t))
if debug_percentile is not None:
t = torch.full_like(t, (debug_percentile * 2 - 1) * self.xint_max)
G_inv = G_inv @ translate2d_inv(torch.round(t[:,0] * width), torch.round(t[:,1] * height))
# --------------------------------------------------------
# Select parameters for general geometric transformations.
# --------------------------------------------------------
# Apply isotropic scaling with probability (scale * strength).
if self.scale > 0:
s = torch.exp2(torch.randn([batch_size], device=device) * self.scale_std)
s = torch.where(torch.rand([batch_size], device=device) < self.scale * self.p, s, torch.ones_like(s))
if debug_percentile is not None:
s = torch.full_like(s, torch.exp2(torch.erfinv(debug_percentile * 2 - 1) * self.scale_std))
G_inv = G_inv @ scale2d_inv(s, s)
# Apply pre-rotation with probability p_rot.
p_rot = 1 - torch.sqrt((1 - self.rotate * self.p).clamp(0, 1)) # P(pre OR post) = p
if self.rotate > 0:
theta = (torch.rand([batch_size], device=device) * 2 - 1) * np.pi * self.rotate_max
theta = torch.where(torch.rand([batch_size], device=device) < p_rot, theta, torch.zeros_like(theta))
if debug_percentile is not None:
theta = torch.full_like(theta, (debug_percentile * 2 - 1) * np.pi * self.rotate_max)
G_inv = G_inv @ rotate2d_inv(-theta) # Before anisotropic scaling.
# Apply anisotropic scaling with probability (aniso * strength).
if self.aniso > 0:
s = torch.exp2(torch.randn([batch_size], device=device) * self.aniso_std)
s = torch.where(torch.rand([batch_size], device=device) < self.aniso * self.p, s, torch.ones_like(s))
if debug_percentile is not None:
s = torch.full_like(s, torch.exp2(torch.erfinv(debug_percentile * 2 - 1) * self.aniso_std))
G_inv = G_inv @ scale2d_inv(s, 1 / s)
# Apply post-rotation with probability p_rot.
if self.rotate > 0:
theta = (torch.rand([batch_size], device=device) * 2 - 1) * np.pi * self.rotate_max
theta = torch.where(torch.rand([batch_size], device=device) < p_rot, theta, torch.zeros_like(theta))
if debug_percentile is not None:
theta = torch.zeros_like(theta)
G_inv = G_inv @ rotate2d_inv(-theta) # After anisotropic scaling.
# Apply fractional translation with probability (xfrac * strength).
if self.xfrac > 0:
t = torch.randn([batch_size, 2], device=device) * self.xfrac_std
t = torch.where(torch.rand([batch_size, 1], device=device) < self.xfrac * self.p, t, torch.zeros_like(t))
if debug_percentile is not None:
t = torch.full_like(t, torch.erfinv(debug_percentile * 2 - 1) * self.xfrac_std)
G_inv = G_inv @ translate2d_inv(t[:,0] * width, t[:,1] * height)
# ----------------------------------
# Execute geometric transformations.
# ----------------------------------
# Execute if the transform is not identity.
if G_inv is not I_3:
# Calculate padding.
cx = (width - 1) / 2
cy = (height - 1) / 2
cp = matrix([-cx, -cy, 1], [cx, -cy, 1], [cx, cy, 1], [-cx, cy, 1], device=device) # [idx, xyz]
cp = G_inv @ cp.t() # [batch, xyz, idx]
Hz_pad = self.Hz_geom.shape[0] // 4
margin = cp[:, :2, :].permute(1, 0, 2).flatten(1) # [xy, batch * idx]
margin = torch.cat([-margin, margin]).max(dim=1).values # [x0, y0, x1, y1]
margin = margin + misc.constant([Hz_pad * 2 - cx, Hz_pad * 2 - cy] * 2, device=device)
margin = margin.max(misc.constant([0, 0] * 2, device=device))
margin = margin.min(misc.constant([width-1, height-1] * 2, device=device))
mx0, my0, mx1, my1 = margin.ceil().to(torch.int32)
# Pad image and adjust origin.
images = torch.nn.functional.pad(input=images, pad=[mx0,mx1,my0,my1], mode='reflect')
G_inv = translate2d((mx0 - mx1) / 2, (my0 - my1) / 2) @ G_inv
# Upsample.
images = upfirdn2d.upsample2d(x=images, f=self.Hz_geom, up=2)
G_inv = scale2d(2, 2, device=device) @ G_inv @ scale2d_inv(2, 2, device=device)
G_inv = translate2d(-0.5, -0.5, device=device) @ G_inv @ translate2d_inv(-0.5, -0.5, device=device)
# Execute transformation.
shape = [batch_size, num_channels, (height + Hz_pad * 2) * 2, (width + Hz_pad * 2) * 2]
G_inv = scale2d(2 / images.shape[3], 2 / images.shape[2], device=device) @ G_inv @ scale2d_inv(2 / shape[3], 2 / shape[2], device=device)
grid = torch.nn.functional.affine_grid(theta=G_inv[:,:2,:], size=shape, align_corners=False)
images = grid_sample_gradfix.grid_sample(images, grid)
# Downsample and crop.
images = upfirdn2d.downsample2d(x=images, f=self.Hz_geom, down=2, padding=-Hz_pad*2, flip_filter=True)
# --------------------------------------------
# Select parameters for color transformations.
# --------------------------------------------
# Initialize homogeneous 3D transformation matrix: C @ color_in ==> color_out
I_4 = torch.eye(4, device=device)
C = I_4
# Apply brightness with probability (brightness * strength).
if self.brightness > 0:
b = torch.randn([batch_size], device=device) * self.brightness_std
b = torch.where(torch.rand([batch_size], device=device) < self.brightness * self.p, b, torch.zeros_like(b))
if debug_percentile is not None:
b = torch.full_like(b, torch.erfinv(debug_percentile * 2 - 1) * self.brightness_std)
C = translate3d(b, b, b) @ C
# Apply contrast with probability (contrast * strength).
if self.contrast > 0:
c = torch.exp2(torch.randn([batch_size], device=device) * self.contrast_std)
c = torch.where(torch.rand([batch_size], device=device) < self.contrast * self.p, c, torch.ones_like(c))
if debug_percentile is not None:
c = torch.full_like(c, torch.exp2(torch.erfinv(debug_percentile * 2 - 1) * self.contrast_std))
C = scale3d(c, c, c) @ C
# Apply luma flip with probability (lumaflip * strength).
v = misc.constant(np.asarray([1, 1, 1, 0]) / np.sqrt(3), device=device) # Luma axis.
if self.lumaflip > 0:
i = torch.floor(torch.rand([batch_size, 1, 1], device=device) * 2)
i = torch.where(torch.rand([batch_size, 1, 1], device=device) < self.lumaflip * self.p, i, torch.zeros_like(i))
if debug_percentile is not None:
i = torch.full_like(i, torch.floor(debug_percentile * 2))
C = (I_4 - 2 * v.ger(v) * i) @ C # Householder reflection.
# Apply hue rotation with probability (hue * strength).
if self.hue > 0 and num_channels > 1:
theta = (torch.rand([batch_size], device=device) * 2 - 1) * np.pi * self.hue_max
theta = torch.where(torch.rand([batch_size], device=device) < self.hue * self.p, theta, torch.zeros_like(theta))
if debug_percentile is not None:
theta = torch.full_like(theta, (debug_percentile * 2 - 1) * np.pi * self.hue_max)
C = rotate3d(v, theta) @ C # Rotate around v.
# Apply saturation with probability (saturation * strength).
if self.saturation > 0 and num_channels > 1:
s = torch.exp2(torch.randn([batch_size, 1, 1], device=device) * self.saturation_std)
s = torch.where(torch.rand([batch_size, 1, 1], device=device) < self.saturation * self.p, s, torch.ones_like(s))
if debug_percentile is not None:
s = torch.full_like(s, torch.exp2(torch.erfinv(debug_percentile * 2 - 1) * self.saturation_std))
C = (v.ger(v) + (I_4 - v.ger(v)) * s) @ C
# ------------------------------
# Execute color transformations.
# ------------------------------
# Execute if the transform is not identity.
if C is not I_4:
images = images.reshape([batch_size, num_channels, height * width])
if num_channels == 3:
images = C[:, :3, :3] @ images + C[:, :3, 3:]
elif num_channels == 1:
C = C[:, :3, :].mean(dim=1, keepdims=True)
images = images * C[:, :, :3].sum(dim=2, keepdims=True) + C[:, :, 3:]
elif num_channels == 6:
images[:, :3] = C[:, :3, :3] @ images[:, :3] + C[:, :3, 3:]
images[:, 3:] = C[:, :3, :3] @ images[:, 3:] + C[:, :3, 3:]
else:
raise ValueError('Image must be RGB (3 channels) or L (1 channel)')
images = images.reshape([batch_size, num_channels, height, width])
# ----------------------
# Image-space filtering.
# ----------------------
if self.imgfilter > 0:
num_bands = self.Hz_fbank.shape[0]
assert len(self.imgfilter_bands) == num_bands
expected_power = misc.constant(np.array([10, 1, 1, 1]) / 13, device=device) # Expected power spectrum (1/f).
# Apply amplification for each band with probability (imgfilter * strength * band_strength).
g = torch.ones([batch_size, num_bands], device=device) # Global gain vector (identity).
for i, band_strength in enumerate(self.imgfilter_bands):
t_i = torch.exp2(torch.randn([batch_size], device=device) * self.imgfilter_std)
t_i = torch.where(torch.rand([batch_size], device=device) < self.imgfilter * self.p * band_strength, t_i, torch.ones_like(t_i))
if debug_percentile is not None:
t_i = torch.full_like(t_i, torch.exp2(torch.erfinv(debug_percentile * 2 - 1) * self.imgfilter_std)) if band_strength > 0 else torch.ones_like(t_i)
t = torch.ones([batch_size, num_bands], device=device) # Temporary gain vector.
t[:, i] = t_i # Replace i'th element.
t = t / (expected_power * t.square()).sum(dim=-1, keepdims=True).sqrt() # Normalize power.
g = g * t # Accumulate into global gain.
# Construct combined amplification filter.
Hz_prime = g @ self.Hz_fbank # [batch, tap]
Hz_prime = Hz_prime.unsqueeze(1).repeat([1, num_channels, 1]) # [batch, channels, tap]
Hz_prime = Hz_prime.reshape([batch_size * num_channels, 1, -1]) # [batch * channels, 1, tap]
# Apply filter.
p = self.Hz_fbank.shape[1] // 2
images = images.reshape([1, batch_size * num_channels, height, width])
images = torch.nn.functional.pad(input=images, pad=[p,p,p,p], mode='reflect')
images = conv2d_gradfix.conv2d(input=images, weight=Hz_prime.unsqueeze(2), groups=batch_size*num_channels)
images = conv2d_gradfix.conv2d(input=images, weight=Hz_prime.unsqueeze(3), groups=batch_size*num_channels)
images = images.reshape([batch_size, num_channels, height, width])
# ------------------------
# Image-space corruptions.
# ------------------------
# Apply additive RGB noise with probability (noise * strength).
if self.noise > 0:
sigma = torch.randn([batch_size, 1, 1, 1], device=device).abs() * self.noise_std
sigma = torch.where(torch.rand([batch_size, 1, 1, 1], device=device) < self.noise * self.p, sigma, torch.zeros_like(sigma))
if debug_percentile is not None:
sigma = torch.full_like(sigma, torch.erfinv(debug_percentile) * self.noise_std)
images = images + torch.randn([batch_size, num_channels, height, width], device=device) * sigma
# Apply cutout with probability (cutout * strength).
if self.cutout > 0:
size = torch.full([batch_size, 2, 1, 1, 1], self.cutout_size, device=device)
size = torch.where(torch.rand([batch_size, 1, 1, 1, 1], device=device) < self.cutout * self.p, size, torch.zeros_like(size))
center = torch.rand([batch_size, 2, 1, 1, 1], device=device)
if debug_percentile is not None:
size = torch.full_like(size, self.cutout_size)
center = torch.full_like(center, debug_percentile)
coord_x = torch.arange(width, device=device).reshape([1, 1, 1, -1])
coord_y = torch.arange(height, device=device).reshape([1, 1, -1, 1])
mask_x = (((coord_x + 0.5) / width - center[:, 0]).abs() >= size[:, 0] / 2)
mask_y = (((coord_y + 0.5) / height - center[:, 1]).abs() >= size[:, 1] / 2)
mask = torch.logical_or(mask_x, mask_y).to(torch.float32)
images = images * mask
return images
#----------------------------------------------------------------------------