Skip to content

oppo-us-research/NeuRBF

Repository files navigation

NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

ICCV 2023 (Oral)

Zhang Chen1, Zhong Li1, Liangchen Song2, Lele Chen1, Jingyi Yu3, Junsong Yuan2, Yi Xu1
1OPPO US Research Center, 2University at Buffalo, 3ShanghaiTech University

This repo is an official PyTorch implementation for the ICCV 2023 paper "NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions". Our work presents a novel type of neural fields with high representation accuracy and model compactness. The repo contains the codes for image fitting, SDF fitting and neural radiance fields.

Install

Clone repository

git clone https://github.com/oppo-us-research/NeuRBF.git
cd NeuRBF

Install conda environment

# Create conda environment
conda create -n neurbf python=3.9 -y
conda activate neurbf

# Install CuPy
pip install cupy-cuda11x
python -m cupyx.tools.install_library --cuda 11.x --library cutensor
python -m cupyx.tools.install_library --cuda 11.x --library cudnn
python -m cupyx.tools.install_library --cuda 11.x --library nccl

# Install PyTorch
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 --index-url https://download.pytorch.org/whl/cu117

# For image/SDF fitting and NeRF task on Synthetic NeRF dataset
pip install einops matplotlib kornia imageio imageio-ffmpeg opencv-python pysdf PyMCubes trimesh plotly scipy GPUtil scikit-image scikit-learn pykdtree commentjson tqdm configargparse lpips tensorboard torch-ema ninja tensorboardX numpy pandas rich packaging scipy torchmetrics jax pillow plyfile omegaconf

# For NeRF task on LLFF dataset
pip install jax tqdm pillow opencv-python pandas lpips imageio torchmetrics scikit-image tensorboard matplotlib
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

Build torch-ngp extension (for image/SDF fitting)

cd thirdparty/torch_ngp/gridencoder
pip install .
cd ../../../

Tested environments

  • Ubuntu 18.04 with PyTorch 1.13.0 & CUDA 11.6 on RTX A6000.
  • Ubuntu 18.04 with PyTorch 2.0.1 & CUDA 11.7 on RTX A6000.
  • Ubuntu 18.04 with PyTorch 2.0.1 & CUDA 11.7 on RTX 3090.
  • Windows 11 with PyTorch 2.0.1 & CUDA 11.7 on RTX 3080 Ti 16G.

Usage

Image fitting

Fit one image

Download an example pluto image. Put it in data/img and rename to pluto.png. Then run

python main.py --config configs/img.py --path ./data/img/pluto.png --alias pluto

The result and tensorboard log will be located in log/img. To adjust model size, you can specify the value of --log2_hashmap_size_ref argument.

NOTE: To reduce GPU memory usage, you can add --ds_device cpu to the above command. This will put some data on CPU instead of GPU, but will also make training slower.

Fit all images in the DIV2K dataset

Download the validation set of the DIV2K dataset and put it in data/img/div2k. The path to each image should be data/img/div2k/DIV2K_valid_HR/xxxx.png. Then run

python main_img_div2k.py

The script will fit each image separately and the results will be stored in log/img_div2k.

SDF fitting

Download an example armadillo mesh of the Stanford 3D Scanning Repository. Unzip it, put it in data/sdf, and rename to armadillo.ply.

Run the following preprocessing script, which normalizes the mesh and sample additional evaluation points.

python preproc_mesh.py --path ./data/sdf/armadillo.ply

Then run

python main.py --config configs/sdf.py --path ./data/sdf/armadillo_nrml.obj --alias armadillo

The result and tensorboard log will be located in log/sdf. To adjust model size, you can specify the value of --log2_hashmap_size_ref argument.

NOTE: To reduce GPU memory usage, you can similarly add --ds_device cpu to the above command.

NeRF

Dataset

Run on Synthetic NeRF Dataset

Download the dataset and unzip to data. For example, the path to the lego scene should be data/nerf_synthetic/lego.

For training, use the following command

python main_nerf.py --config_init configs/nerf_tensorf/nerf_synthetic_init.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego

It will first distill scene information to initialize RBF position and shape parameters, and then train the full model. The result and tensorboard log will be located in log/nerf_synthetic. Change --data_name to run on other scenes.

NOTE: To reduce GPU memory usage, you can add --batch_size_init 2048 (tested working on RTX 3090 24G). The number 2048 can be further lowered if needed.

To render images using a trained model, run

python main_nerf.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego --ckpt [path_to_checkpoint] --render_only 1 --[what_to_render] 1

where [path_to_checkpoint] is the path to the checkpoint file and [what_to_render] can be render_test or render_train. Note that the training command already conducts render_test at the end of training.

To extract mesh from a trained model, run

python main_nerf.py --config configs/nerf_tensorf/nerf_synthetic.py --data_name lego --ckpt [path_to_checkpoint] --export_mesh 1

Run on LLFF Dataset

Download the dataset and unzip to data. For example, the path to the room scene should be data/nerf_llff_data/room.

For training, use the following command

python main_nerf_kplanes.py --config_init configs/nerf_kplanes/llff_init.py --config configs/nerf_kplanes/llff.py --data_name room

It will first distill scene information to initialize RBF position and shape parameters, and then train the full model. The result and tensorboard log will be located in log/llff. Change --data_name to run on other scenes.

To render a spiral-path video using a trained model, run

python main_nerf_kplanes.py --config configs/nerf_kplanes/llff.py --log-dir [model_folder] --render-only

where [model_folder] is the path to the folder that contains the trained model.

Acknowledgement

We sincerely thank the authors of the following repos, whose work has been referenced in our released codes: torch-ngp, TensoRF, nrff, K-Planes, MINER_pl, and siren.

Citation

If you find our work useful, please consider citing:

@inproceedings{chen2023neurbf,
    author    = {Chen, Zhang and Li, Zhong and Song, Liangchen and Chen, Lele and Yu, Jingyi and Yuan, Junsong and Xu, Yi},
    title     = {NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {4182-4194}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages