About | Web Arhitecture | Neural Network | ImgFlip API | GRPC Server | Backend | Frontend | Examples | References
Generating memes using Neural Networks
Dataset used: ImgFlip575K_Dataset
Code -> net/ai-memes.ipynb
Colab notebook -> ai-memes.ipynb
Used Show and Tell Model[1][2].
- Trained for all memes
- 50 epochs, batch size 32
- GPUs: Tesla K80 / Tesla P100-PCIE-16GB
-
Managed to train for a small number of memes(10).
-
Used GPU NVIDIA GeForce GTX 950M with CUDA 9.0, CuDNN 7.3.1 installed
-
Anaconda environment with: python 3.6.8, TF-GPU 1.12 installed as in here.
Connected to django SQLite db
Uses the neural network to generate captions
Is a Grpc server and sends request to Grpc client ( ImgFlip API ) to get link with the captioned img
Django and Graphene
Used default SQLite db
Developed in Vue.js using cool lottie animations
Uses GraphQL to get and create memes from backend
$> cd ./api
$> touch .env
Add your ImgFlip account info to .env file
IMGFLIP_USERNAME=<your ImgFlip account>
IMGFLIP_PASSWORD=<your ImgFlip password>
Run the server
$> npm start
Call examples found in /api/src/index.js
ex1. https://i.imgflip.com/3vh5hr.jpg
ex2. https://i.imgflip.com/3vh5hs.jpg
[1] Oriol Vinyals, Alexander Toshev, Samy Bengio, & Dumitru Erhan. (2014). Show and Tell: A Neural Image Caption Generator.
[2] Jeff Heaton. Washington University (in St. Louis) Course T81-558: Applications of Deep Neural Networks Module 10: Time Series in Keras. https://github.com/jeffheaton/t81_558_deep_learning