-
Notifications
You must be signed in to change notification settings - Fork 65
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[BUGFIX] Fix gated activations in WaveNet (#131)
* Possible fix to gating bug. Haven't tried, needs tests * Unit test * Clean up comments
- Loading branch information
1 parent
cd92997
commit e181f61
Showing
3 changed files
with
86 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
// Tests for the WaveNet | ||
|
||
#include <Eigen/Dense> | ||
#include <cassert> | ||
#include <iostream> | ||
|
||
#include "NAM/wavenet.h" | ||
|
||
namespace test_wavenet | ||
{ | ||
void test_gated() | ||
{ | ||
// Assert correct nuemrics of the gating activation. | ||
// Issue 101 | ||
const int conditionSize = 1; | ||
const int channels = 1; | ||
const int kernelSize = 1; | ||
const int dilation = 1; | ||
const std::string activation = "ReLU"; | ||
const bool gated = true; | ||
auto layer = nam::wavenet::_Layer(conditionSize, channels, kernelSize, dilation, activation, gated); | ||
|
||
// Conv, input mixin, 1x1 | ||
std::vector<float> weights{ | ||
// Conv (weight, bias) NOTE: 2 channels out bc gated, so shapes are (2,1,1), (2,) | ||
1.0f, 1.0f, 0.0f, 0.0f, | ||
// Input mixin (weight only: (2,1,1)) | ||
1.0f, -1.0f, | ||
// 1x1 (weight (1,1,1), bias (1,)) | ||
// NOTE: Weights are (1,1) on conv, (1,-1), so the inputs sum on the upper channel and cancel on the lower. | ||
// This should give us a nice zero if the input & condition are the same, so that'll sigmoid to 0.5 for the | ||
// gate. | ||
1.0f, 0.0f}; | ||
auto it = weights.begin(); | ||
layer.set_weights_(it); | ||
assert(it == weights.end()); | ||
|
||
const long numFrames = 4; | ||
layer.set_num_frames_(numFrames); | ||
|
||
Eigen::MatrixXf input, condition, headInput, output; | ||
input.resize(channels, numFrames); | ||
condition.resize(channels, numFrames); | ||
headInput.resize(channels, numFrames); | ||
output.resize(channels, numFrames); | ||
|
||
const float signalValue = 0.25f; | ||
input.fill(signalValue); | ||
condition.fill(signalValue); | ||
// So input & condition will sum to 0.5 on the top channel (-> ReLU), cancel to 0 on bottom (-> sigmoid) | ||
|
||
headInput.setZero(); | ||
output.setZero(); | ||
|
||
layer.process_(input, condition, headInput, output, 0, 0); | ||
|
||
// 0.25 + 0.25 -> 0.5 for conv & input mixin top channel | ||
// (0 on bottom channel) | ||
// Top ReLU -> preseves 0.5 | ||
// Bottom sigmoid 0->0.5 | ||
// Product is 0.25 | ||
// 1x1 is unity | ||
// Skip-connect -> 0.25 (input) + 0.25 (output) -> 0.5 output | ||
// head output gets 0+0.25 = 0.25 | ||
const float expectedOutput = 0.5; | ||
const float expectedHeadInput = 0.25; | ||
for (int i = 0; i < numFrames; i++) | ||
{ | ||
const float actualOutput = output(0, i); | ||
const float actualHeadInput = headInput(0, i); | ||
// std::cout << actualOutput << std::endl; | ||
assert(actualOutput == expectedOutput); | ||
assert(actualHeadInput == expectedHeadInput); | ||
} | ||
} | ||
}; // namespace test_wavenet |