Stars
Android OpenGL ES 3.0 从入门到精通系统性学习教程 ( OpenGL ES 3.X Systematic Learning Tutorials)
开源配合型人脸活体检测 Open Source Face Anti-spoofing
End-to-End Object Detection with Transformers
This is the implementation of CVPR2020 paper “Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition”.
Memory Attention Networks, in IJCAI 2018
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Implementation code for document layout analysis (Hackathon 2020 in Suzhou)
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting, AAAI 2019, pytorch version
Graph Attention Networks (https://arxiv.org/abs/1710.10903)
Official PyTorch implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21)
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
[WACV 2022] "Sandwich Batch Normalization: A Drop-In Replacement for Feature Distribution Heterogeneity" by Xinyu Gong, Wuyang Chen, Tianlong Chen and Zhangyang Wang
SELD-TCN: Sound Event Detection & Localization via Temporal Convolutional Network | Python w/ Tensorflow
这是一个YoloV4-pytorch的源码,可以用于训练自己的模型。
Object Detection and Multi-Object Tracking
💎 Detect , track and extract the optimal face in multi-target faces (exclude side face and select the optimal face).
Simple Online Realtime Tracking with a Deep Association Metric
PyTorch ,ONNX and TensorRT implementation of YOLOv4
Python 开源项目之「自学编程之路」,保姆级教程:AI实验室、宝藏视频、数据结构、学习指南、机器学习实战、深度学习实战、网络爬虫、大厂面经、程序人生、资源分享。
Temporal Graph Convolutional Network for Urban Traffic Flow Prediction Method
✏️ 算法相关知识储备 LeetCode with Python and JavaScript 📚
Code for the BMVC paper (http://bmvc2018.org/contents/papers/1003.pdf)
A lightweight network for body/hand action recognition
Implementation of Principal Neighbourhood Aggregation for Graph Neural Networks in PyTorch, DGL and PyTorch Geometric