Skip to content

sud0301/my_uda_pytorch

Repository files navigation

Pytorch Implementation of Unsupervised Data Augmentation for Consistency Training

python main.py \
    --dataset CIFAR10 \
    --num-labeled  1000 \
    --lr-warm-up  \
    --warm-up-steps 10000 \
    --num-steps 100000 \
    --batch-size-lab 64 \
    --batch-size-unlab 320 \
    --confidence-mask 0.6 \
    --softmax-temp 0.5 \
    --seed 3 \
    --rot \
    --verbose \
    --use-ema 
python main.py \
    --dataset ImageNet \
    --num-classes 1000 \
    --percent-labeled  10 \
    --lr-warm-up  \
    --warm-up-steps 10000 \
    --num-steps 200000 \
    --batch-size-lab 128 \
    --batch-size-unlab 128 \
    --lr 0.3 \
    --wdecay 1e-4 \
    --confidence-mask 0.5 \
    --softmax-temp 0.4 \
    --gpu-id 0,1,2,3,4,5,6,7 \
    --seed 3 \
    --rot \
    --verbose \
    --use-ema 

Use rot flag for using rotation loss from S4L paper. Run for 400k iterations(num-steps) for improved results.

Results on CIFAR-10

# Labels UDA Paper This UDA Repo with Rotation(rot)
250 8.76 11 8.2
500 6.68 9.1 6.4
1000 5.87 7.8 5.8
2000 5.51 6.9 5.7
4000 5.29 6.1 5.1

Model does not learn with higher learning rate lr=0.3

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages