-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_lab_only.py
445 lines (341 loc) · 15.4 KB
/
main_lab_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils import data
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import pickle
import numpy as np
#from models.senet import *
from utils import progress_bar
from cutout import Cutout
import config
import model
from data_loader import iCIFAR10
#from resnet import resnet18
from wrn import wrn
from autoaugment_extra import CIFAR10Policy
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.03, type=float, help='learning rate')
parser.add_argument('--lr-warm-up', action='store_true', help='increase lr slowly')
parser.add_argument('--batch-size-lab', default=32, type=int, help='training batch size')
parser.add_argument('--batch-size-unlab', default=160, type=int, help='training batch size')
parser.add_argument('--num-steps', default=100000, type=int, help='number of iterations')
parser.add_argument('--partial-data', default=0.5, type=float, help='partial data')
parser.add_argument("--partial-id", type=str, default=None, help="restore partial id list")
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--cutout', action='store_true', help='use cutout augmentation')
parser.add_argument('--n-holes', default=1, type=float, help='number of holes for cutout')
parser.add_argument('--cutout-size', default=16, type=float, help='size of the cutout window')
parser.add_argument('--autoaugment', action='store_true', help='use autoaugment augmentation')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 1 # start from epoch 0 or last checkpoint epoch
class TransformTwice:
def __init__(self, transform, aug_transform):
self.transform = transform
self.aug_transform = aug_transform
def __call__(self, inp):
out1 = self.transform(inp)
out2 = self.aug_transform(inp)
return out1, out2
# Data
print('==> Preparing data..')
transform_ori = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.49139968, 0.48215841, 0.44653091), (0.24703223, 0.24348513, 0.26158784)),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_aug = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), CIFAR10Policy(),
transforms.ToTensor(),
#transforms.Normalize((0.49139968, 0.48215841, 0.44653091), (0.24703223, 0.24348513, 0.26158784)),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
Cutout(n_holes=args.n_holes, length=args.cutout_size),
])
#transform_aug = transform_ori
#transform_train_aug.transforms.append()
#if args.cutout:
# transform_aug.transforms.append(Cutout(n_holes=args.n_holes, length=args.cutout_size))
#if args.autoaugment:
# transform_aug.transforms.append(CIFAR10Policy())
transform_test = transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.49139968, 0.48215841, 0.44653091), (0.24703223, 0.24348513, 0.26158784)),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_train = TransformTwice(transform_ori, transform_aug)
#list_classes = [5,6,7,8,9]
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_aug)
labelset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_test)
#trainset_aug = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
#trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8)
train_dataset_size = len(trainset)
partial_size = int(args.partial_data * train_dataset_size)
if args.partial_id is not None:
train_ids = pickle.load(open(args.partial_id, 'rb'))
print('loading train ids from {}'.format(args.partial_id))
else:
train_ids = np.arange(train_dataset_size)
np.random.shuffle(train_ids)
pickle.dump(train_ids, open('train_id.pkl', 'wb'))
#train_sampler_lab = data.sampler.SubsetRandomSampler(train_ids[:4000])
#train_sampler_unlab = data.sampler.SubsetRandomSampler(train_ids[4000:])
mask = np.zeros(train_ids.shape[0], dtype=np.bool)
labels = np.array([trainset[i][1] for i in train_ids], dtype=np.int64)
for i in range(10):
mask[np.where(labels == i)[0][: int(4000 / 10)]] = True
# labeled_indices, unlabeled_indices = indices[mask], indices[~ mask]
labeled_indices, unlabeled_indices = train_ids[mask], train_ids
train_sampler_lab = data.sampler.SubsetRandomSampler(labeled_indices)
train_sampler_unlab = data.sampler.SubsetRandomSampler(unlabeled_indices)
trainloader_lab = data.DataLoader(trainset, batch_size=args.batch_size_lab, sampler=train_sampler_lab, num_workers=8, drop_last=True, pin_memory=True)
trainloader_unlab = data.DataLoader(trainset, batch_size=args.batch_size_unlab, sampler=train_sampler_unlab, num_workers=8, pin_memory=True)
trainloader_val = data.DataLoader(labelset, batch_size=100, sampler=train_sampler_lab, num_workers=8, drop_last=False)
#trainloader_val = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=False, num_workers=2)
#testloader = data.DataLoader(trainset, batch_size=args.batch_size, sampler=test_sampler, num_workers=3, pin_memory=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
#trainloader_lab_iter = iter(trainloader_lab)
#trainloader_unlab_iter = iter(trainloader_unlab)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = wrn().cuda()
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4, nesterov=True)
#optimizer = optim.Adam(net.parameters(), lr=args.lr, betas= (0.9, 0.999))
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.num_steps, eta_min=0.0001)
def set_optimizer_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
# Training
def train(epoch, trainloader_lab, trainloader_unlab, scheduler, optimizer):
print('\nEpoch: %d' % epoch)
train_loss = 0
train_loss_lab = 0
train_loss_unlab = 0
correct = 0
total = 0
trainloader_lab_iter = iter(trainloader_lab)
trainloader_unlab_iter = iter(trainloader_unlab)
for i_iter in range(args.num_steps):
net.train()
scheduler.step()
optimizer.zero_grad()
if args.lr_warm_up:
if i_iter < 10000:
warmup_lr = i_iter/10000* args.lr
optimizer = set_optimizer_lr(optimizer, warmup_lr)
if i_iter%1000==0:
for param_group in optimizer.param_groups:
print(param_group['lr'])
try:
batch_lab = next(trainloader_lab_iter)
except:
trainloader_lab_iter = iter(trainloader_lab)
batch_lab = next(trainloader_lab_iter)
inputs_lab, targets_lab = batch_lab
inputs_lab, targets_lab = inputs_lab.to(device), targets_lab.to(device)
outputs_lab = net(inputs_lab)
loss_lab = criterion(outputs_lab, targets_lab)
#inputs, targets = inputs.to(device), targets.to(device)
'''
try:
batch_unlab = next(trainloader_unlab_iter)
except:
trainloader_unlab_iter = iter(trainloader_unlab)
batch_unlab = next(trainloader_unlab_iter)
(inputs_unlab, inputs_unlab_aug), _ = batch_unlab
inputs_unlab, inputs_unlab_aug = inputs_unlab.cuda(), inputs_unlab_aug.cuda()
outputs_unlab = net(inputs_unlab)
outputs_unlab_aug = net(inputs_unlab_aug)
#print (targets)
#loss_unlab = nn.KLDivLoss()(F.log_softmax(outputs_unlab), F.softmax(outputs_unlab_aug))
#loss_unlab = nn.KLDivLoss()(F.log_softmax(outputs_unlab_aug, dim=1), F.softmax(outputs_unlab, dim=1))
loss_kldiv = F.kl_div(F.log_softmax(outputs_unlab_aug, dim=1), F.softmax(outputs_unlab, dim=1), reduction='none') # loss for unsupervised
loss_kldiv = torch.sum(loss_kldiv, dim=1)
loss_unlab = 1.0*torch.mean(loss_kldiv)
'''
loss = loss_lab #+ loss_unlab
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss_lab += loss_lab.item()
#train_loss_unlab += loss_unlab.item()
progress_bar(i_iter, args.num_steps, 'Loss: %.6f | Loss_lab: %.6f'
% (loss.item(), loss_lab.item()))
#progress_bar(i_iter, args.num_steps, 'Loss: %.6f | Loss_lab: %.6f | Loss_unlab: %.6f'
#% (loss.item(), loss_lab.item(), loss_unlab.item()))
if i_iter%1000==0:
train_loss /= 1000
train_loss_lab /= 1000
train_loss_unlab /= 1000
test(epoch, i_iter, train_loss, train_loss_lab, train_loss_unlab)
val()
train_loss = 0
train_loss_lab = 0
train_loss_unlab = 0
'''
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if i_iter%1000==0:
test(epoch)
for param_group in optimizer.param_groups:
print(param_group['lr'])
progress_bar(i_iter, args.num_steps, 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (loss.item(), 100.*correct/total, correct, total))
'''
#for i_iter in range(args.num_steps):
'''
if i_iter < 4000:
warmup_lr = i_iter/4000* args.lr
optimizer = set_optimizer_lr(optimizer, warmup_lr)
'''
'''
if i_iter%1000==0:
for param_group in optimizer.param_groups:
print(param_group['lr'])
scheduler.step()
'''
'''
try:
batch_lab = next(trainloader_lab_iter)
except:
trainloader_lab_iter = iter(trainloader_lab)
batch_lab = next(trainloader_lab_iter)
inputs_lab, targets_lab = batch_lab
inputs_lab, targets_lab = inputs_lab.to(device), targets_lab.to(device)
optimizer.zero_grad()
outputs_lab = net(inputs_lab)
loss_lab = criterion(outputs_lab, targets_lab)
try:
batch_unlab = next(trainloader_unlab_iter)
except:
trainloader_unlab_iter = iter(trainloader_unlab)
batch_unlab = next(trainloader_unlab_iter)
(inputs_unlab, inputs_unlab_aug), _ = batch_unlab
inputs_unlab, inputs_unlab_aug = inputs_unlab.cuda(), inputs_unlab_aug.cuda()
outputs_unlab = net(inputs_unlab)
outputs_unlab_aug = net(inputs_unlab_aug)
#loss_unlab = criterion(outputs_unlab, outputs_unlab_aug)
loss_unlab = nn.KLDivLoss()(F.log_softmax(outputs_unlab), F.softmax(outputs_unlab_aug))
loss = loss_lab #+ loss_unlab
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss_lab += loss_lab.item()
#train_loss_unlab += loss_unlab.item()
progress_bar(i_iter, args.num_steps, 'Loss: %.6f | Loss_lab: %.6f'
% (loss.item(), loss_lab.item()))
#progress_bar(i_iter, args.num_steps, 'Loss: %.6f | Loss_lab: %.6f | Loss_unlab: %.6f'
#% (loss.item(), loss_lab.item(), loss_unlab.item()))
if i_iter%1000==0:
train_loss /= 1000
train_loss_lab /= 1000
#train_loss_unlab /= 1000
test(epoch, i_iter, train_loss, train_loss_lab, train_loss_unlab)
train_loss = 0
train_loss_lab = 0
train_loss_unlab = 0
if i_iter%100==0:
_, predicted = outputs_lab.max(1)
total += targets_lab.size(0)
correct += predicted.eq(targets_lab).sum().item()
progress_bar(i_iter, args.num_steps, 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss, 100.*correct/total, correct, total))
'''
def val():
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
U_all = []
fp = open('results_with_val','a')
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(trainloader_val):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
probs = F.softmax(outputs, dim=1)
log_probs = torch.log(probs)*(-1)
U = (probs*log_probs).sum(1)
U_all.append(U)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader_val), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch, i_iter, loss, loss_lab, loss_unlab):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
U_all = []
fp = open('results_semi_wo_flip_and_crop.txt','a')
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
probs = F.softmax(outputs, dim=1)
log_probs = torch.log(probs)*(-1)
U = (probs*log_probs).sum(1)
U_all.append(U)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
fp.write(str(i_iter) + ' ' + str(100.*correct/total) + ' loss: ' + str(loss) + ' loss lab: ' + str(loss_lab) + ' loss unlab: ' + str(loss_unlab) + '\n')
#fp.write(str(i_iter))
#U_all = torch.cat(U_all, dim=0)
#U_sorted, _ = U_all.sort()
#print ('average entropy: ', U_all.float().mean())
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
'''
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
'''
best_acc = acc
for epoch in range(start_epoch, start_epoch+100):
train(epoch, trainloader_lab, trainloader_unlab, scheduler, optimizer)
if epoch%5==0:
test(epoch)