Skip to content

[IROS 2024] 🦜🌍 BEV-CV: Birds-Eye-View Transform for Cross-View Geo-Localisation πŸ“‘πŸ—ΊοΈ

License

Notifications You must be signed in to change notification settings

tavisshore/BEV-CV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

47 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🚧 Finalising Code

🦜🌍 BEV-CV: Birds-Eye-View Transform for Cross-View Geo-Localisation πŸ“‘πŸ—ΊοΈ

Tavis Shore Simon Hadfield Oscar Mendez

Centre for Vision, Speech, and Signal Processing (CVSSP)

University of Surrey, Guildford, GU2 7XH, United Kingdom

arxiv Conference Project Page License Visits Badge

PWC PWC

bevcv_dark_mode bevcv

πŸ““ Description

Cross-view image matching for geo-localisation is a challenging problem due to the significant visual difference between aerial and ground-level viewpoints. The method provides localisation capabilities from geo-referenced images, eliminating the need for external devices or costly equipment. This enhances the capacity of agents to autonomously determine their position, navigate, and operate effectively in GNSS-denied environments. Current research employs a variety of techniques to reduce the domain gap such as applying polar transforms to aerial images or synthesising between perspectives. However, these approaches generally rely on having a 360Β° field of view, limiting real-world feasibility. We propose BEV-CV, an approach introducing two key novelties with a focus on improving the real-world viability of cross-view geo-localisation. Firstly bringing ground-level images into a semantic Birds-Eye-View before matching embeddings, allowing for direct comparison with aerial image representations. Secondly, we adapt datasets into application realistic format - limited Field-of-View images aligned to vehicle direction. BEV-CV achieves state-of-the-art recall accuracies, improving Top-1 rates of 70Β° crops of CVUSA and CVACT by 23% and 24% respectively. Also decreasing computational requirements by reducing floating point operations to below previous works, and decreasing embedding dimensionality by 33% - together allowing for faster localisation capabilities.


🧰 BEV-CV: Benchmarking

🚧 Under Construction

🐍 Environment Setup

conda env create -f requirements.yaml

🏭 Data Pre-Processing


Submodule Pretraining


BEV-CV Training


BEV-CV Evaluation


BEV-CV: Benchmark Results

Model Orientation
Aware
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1\%
CVUSA 90Β° CVUSA 70Β°
CVM ❌ 2.76 10.11 16.74 55.49 2.62 9.30 15.06 21.77
CVFT ❌ 4.80 14.84 23.18 61.23 3.79 12.44 19.33 55.56
DSM ❌ 16.19 31.44 39.85 71.13 8.78 19.90 27.30 61.20
L2LTR ❌ 26.92 50.49 60.41 86.88 13.95 33.07 43.86 77.65
TransGeo ❌ 30.12 54.18 63.96 89.18 16.43 37.28 48.02 80.75
GeoDTR ❌ 18.81 43.36 57.94 88.14 14.84 38.03 51.27 88.17
BEV-CV ❌ 15.17 33.91 45.33 82.53 14.03 32.32 43.25 81.48
GAL β‰ˆ 22.54 44.36 54.17 84.59 15.20 32.86 42.06 75.21
DSM βœ… 33.66 51.70 59.68 82.46 20.88 36.99 44.70 71.10
L2LTR βœ… 25.21 51.90 63.54 91.16 22.20 46.71 58.99 89.37
TransGeo βœ… 21.96 45.35 56.49 86.80 17.27 38.95 49.44 81.34
GeoDTR βœ… 15.21 39.32 52.27 88.72 14.00 35.28 47.77 86.39
BEV-CV βœ… 32.11 58.36 69.06 92.99 27.40 52.94 64.47 90.94
CVACT 90Β° CVACT 70Β°
CVM ❌ 1.47 5.70 9.64 38.05 1.24 4.98 8.42 34.74
CVFT ❌ 1.85 6.28 10.54 39.25 1.49 5.13 8.19 34.59
DSM ❌ 18.11 33.34 40.94 68.65 8.29 20.72 27.13 57.08
L2LTR ❌ 13.07 30.38 41.00 76.07 6.67 15.94 23.45 49.37
TransGeo ❌ 10.75 28.22 37.51 70.15 7.01 19.44 27.50 62.19
GeoDTR ❌ 26.53 53.26 64.59 91.13 16.87 40.22 53.13 87.92
BEV-CV ❌ 4.14 14.46 22.64 61.18 3.92 13.50 20.53 59.34
GAL β‰ˆ 26.05 49.23 59.26 85.60 14.17 32.96 43.24 77.49
DSM βœ… 31.17 51.44 60.05 82.90 18.44 35.87 44.39 71.97
L2LTR βœ… 33.62 46.28 58.21 78.62 28.65 53.59 65.02 90.48
TransGeo βœ… 28.16 34.44 41.54 67.15 24.05 42.68 55.47 80.72
GeoDTR βœ… 26.76 53.65 65.35 92.12 15.38 37.09 49.40 86.38
BEV-CV βœ… 45.79 75.85 83.97 96.76 37.85 69.00 78.52 95.03

βœ’οΈ Citation

If you find BEV-CV useful for your work please cite:

@INPROCEEDINGS{bevcv,
    author={Shore, Tavis and Hadfield, Simon and Mendez, Oscar },
    booktitle={2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, 
    title={BEV-CV: Birds-Eye-View Transform for Cross-View Geo-Localisation}, 
    year={2024},
    pages={11047-11054},
}

πŸ“— Related Works

Β Β Β Β Β  arxiv Conference Project Page GitHub License

Β Β Β Β Β  arxiv Conference Project Page GitHub License

⭐ Star History

Star History Chart

About

[IROS 2024] 🦜🌍 BEV-CV: Birds-Eye-View Transform for Cross-View Geo-Localisation πŸ“‘πŸ—ΊοΈ

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages