Shikra, an MLLM designed to kick off referential dialogue by excelling in spatial coordinate inputs/outputs in natural language, without additional vocabularies, position encoders, pre-/post-detection, or external plug-in models.
[07/03] We released the code, data and Shikra-7B checkpoint.
[06/28] We released Shikra: Unleashing Multimodal LLM’s Referential Dialogue Magic, which is designed to kick off referential dialogue. Checkout the paper.
conda create -n shikra python=3.10
conda activate shikra
pip install -r requirements.txt
accelerate config
We release Shikra weights as delta weights to comply with the LLaMA model license. You can add our delta to the original LLaMA weights to obtain the Shikra weights.
Instructions:
- Get the original LLaMA weights in the huggingface format by following the instructions here.
- Use the following scripts to get weights by applying our delta (shikra-7b-delta). It will automatically download delta weights from our Hugging Face account.
python mllm/models/shikra/apply_delta.py \
--base /path/to/llama-7b \
--target /output/path/to/shikra-7b \
--delta shikras/shikra-7b-delta-v1
After preparing data, you can train the model using the command:
accelerate launch --num_processes 4 \
--main_process_port 23786 \
mllm/pipeline/finetune.py \
config/shikra_pretrain_final19_stage2.py \
--cfg-options model_args.model_name_or_path=/path/to/init/checkpoint
mmengine style args and huggingface:Trainer args are supported. For example, you can change epoch and output_dir like this:
accelerate launch --num_processes 4 \
--main_process_port 23786 \
mllm/pipeline/finetune.py \
config/shikra_pretrain_final19_stage2.py \
--cfg-options model_args.model_name_or_path=/path/to/init/checkpoint \
--num_train_epochs 3 \
--output_dir /path/to/new/exp/dir
where --cfg-options a=balabala b=balabala
is mmengine style argument. They will overwrite the argument predefined in config file. And --num_train_epochs
, --output_dir
are huggingface:Trainer argument.
After preparing data, you can inference the model using the command:
accelerate launch --num_processes 4 \
--main_process_port 23786 \
mllm/pipeline/finetune.py \
config/shikra_eval_multi_pope.py \
--cfg-options model_args.model_name_or_path=/path/to/checkpoint
mmengine style args and huggingface:Trainer args are supported. for example, you can change eval batchsize like this:
accelerate launch --num_processes 4 \
--main_process_port 23786 \
mllm/pipeline/finetune.py \
config/shikra_eval_multi_pope.py \
--cfg-options model_args.model_name_or_path=/path/to/checkpoint \
--per_device_eval_batch_size 1
where --cfg-options a=balabala b=balabala
is mmengine style argument. They will overwrite the argument predefined in config file. And --per_device_eval_batch_size
is huggingface:Trainer argument.
the prediction result will be saved in output_dir/multitest_xxxx_extra_prediction.jsonl
, which hold the same order as the input dataset.
@article{chen2023shikra,
title={Shikra: Unleashing Multimodal LLM's Referential Dialogue Magic},
author={Chen, Keqin and Zhang, Zhao and Zeng, Weili and Zhang, Richong and Zhu, Feng and Zhao, Rui},
journal={arXiv preprint arXiv:2306.15195},
year={2023}
}
This repo benefits from LLaVA, Vicuna and ChatGLM-Efficient-Tuning. Thanks for their wonderful works.