-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
dongdongl
committed
Oct 26, 2023
1 parent
07baf3a
commit 5df7a6f
Showing
3 changed files
with
278 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
// RUN: ENABLE_TMA=1 ENABLE_MMA_V3=1 triton-opt %s -split-input-file -tritongpu-pipeline=compute-capability=90 -canonicalize | FileCheck %s | ||
|
||
|
||
#blocked = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 2], order = [0, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1]}> | ||
#blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [2, 4], order = [0, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1]}> | ||
#blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [2, 16], warpsPerCTA = [8, 1], order = [1, 0], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1]}> | ||
#blocked3 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [8], order = [0], CTAsPerCGA = [1], CTASplitNum = [1], CTAOrder = [0]}> | ||
#blocked4 = #triton_gpu.blocked<{sizePerThread = [8, 1], threadsPerWarp = [16, 2], warpsPerCTA = [1, 8], order = [0, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1]}> | ||
#mma = #triton_gpu.mma<{versionMajor = 3, versionMinor = 0, warpsPerCTA = [8, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [1, 0], instrShape = [16, 64, 16]}> | ||
#mma1 = #triton_gpu.mma<{versionMajor = 3, versionMinor = 0, warpsPerCTA = [8, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [1, 0], instrShape = [16, 128, 16]}> | ||
#shared = #triton_gpu.shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1], hasLeadingOffset = true}> | ||
#shared1 = #triton_gpu.shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [0, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [0, 1], hasLeadingOffset = true}> | ||
module attributes {"triton_gpu.compute-capability" = 90 : i32, "triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 8 : i32, "triton_gpu.threads-per-warp" = 32 : i32} { | ||
tt.func public @two_dependent_dot(%arg0: !tt.ptr<f16, 1> {tt.divisibility = 16 : i32} , %arg1: !tt.ptr<f16, 1> {tt.divisibility = 16 : i32} , %arg2: !tt.ptr<f16, 1> {tt.divisibility = 16 : i32} , %arg3: f32 , %arg4: !tt.ptr<f32, 1> {tt.divisibility = 16 : i32} , %arg5: !tt.ptr<f16, 1> {tt.divisibility = 16 : i32} , %arg6: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg7: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg8: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg9: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg10: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg11: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg12: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg13: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg14: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg15: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg16: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg17: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg18: i32 , %arg19: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg20: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} , %arg21: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 8 : i32} ) attributes {noinline = false} { | ||
%cst = arith.constant dense<0xFF800000> : tensor<128x64xf32, #mma> | ||
%cst_0 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma> | ||
%c0_i32 = arith.constant 0 : i32 | ||
%c64_i32 = arith.constant 64 : i32 | ||
%cst_1 = arith.constant dense<0xFF800000> : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%cst_2 = arith.constant dense<0.000000e+00> : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%cst_3 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma1> | ||
%c1_i32 = arith.constant 1 : i32 | ||
%cst_4 = arith.constant 1.44269502 : f32 | ||
%c128_i32 = arith.constant 128 : i32 | ||
%c1_i64 = arith.constant 1 : i64 | ||
%c128_i64 = arith.constant 128 : i64 | ||
%0 = tt.get_program_id x : i32 | ||
%1 = tt.get_program_id y : i32 | ||
%2 = arith.muli %1, %arg7 : i32 | ||
%3 = arith.divsi %2, %arg8 : i32 | ||
%4 = arith.extsi %arg21 : i32 to i64 | ||
%5 = arith.extsi %arg11 : i32 to i64 | ||
%6 = tt.make_tensor_ptr %arg1, [%c128_i64, %4], [%c1_i64, %5], [%c0_i32, %3] {order = array<i32: 0, 1>} : <tensor<128x64xf16, #blocked>, 1> | ||
%7 = arith.extsi %arg14 : i32 to i64 | ||
%8 = tt.make_tensor_ptr %arg2, [%4, %c128_i64], [%7, %c1_i64], [%3, %c0_i32] {order = array<i32: 1, 0>} : <tensor<64x128xf16, #blocked1>, 1> | ||
%9 = arith.muli %0, %c128_i32 : i32 | ||
%10 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> | ||
%11 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%12 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #blocked3> | ||
%13 = tt.splat %9 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> | ||
%14 = tt.splat %9 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%15 = tt.splat %9 : (i32) -> tensor<128xi32, #blocked3> | ||
%16 = arith.addi %13, %10 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> | ||
%17 = arith.addi %14, %11 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%18 = arith.addi %15, %12 : tensor<128xi32, #blocked3> | ||
%19 = arith.mulf %arg3, %cst_4 : f32 | ||
%20 = tt.addptr %arg0, %2 : !tt.ptr<f16, 1>, i32 | ||
%21 = tt.expand_dims %16 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>) -> tensor<128x1xi32, #blocked2> | ||
%22 = tt.expand_dims %17 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128x1xi32, #mma> | ||
%23 = tt.splat %arg8 : (i32) -> tensor<128x1xi32, #blocked2> | ||
%24 = arith.muli %21, %23 : tensor<128x1xi32, #blocked2> | ||
%25 = tt.splat %20 : (!tt.ptr<f16, 1>) -> tensor<128x1x!tt.ptr<f16, 1>, #blocked2> | ||
%26 = tt.addptr %25, %24 : tensor<128x1x!tt.ptr<f16, 1>, #blocked2>, tensor<128x1xi32, #blocked2> | ||
%27 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>> | ||
%28 = tt.expand_dims %27 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>) -> tensor<1x128xi32, #blocked2> | ||
%29 = tt.broadcast %26 : (tensor<128x1x!tt.ptr<f16, 1>, #blocked2>) -> tensor<128x128x!tt.ptr<f16, 1>, #blocked2> | ||
%30 = tt.broadcast %28 : (tensor<1x128xi32, #blocked2>) -> tensor<128x128xi32, #blocked2> | ||
%31 = tt.addptr %29, %30 : tensor<128x128x!tt.ptr<f16, 1>, #blocked2>, tensor<128x128xi32, #blocked2> | ||
%32 = tt.load %31 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x128xf16, #blocked2> | ||
%33 = tt.splat %19 : (f32) -> tensor<128x128xf32, #blocked2> | ||
%34 = arith.extf %32 : tensor<128x128xf16, #blocked2> to tensor<128x128xf32, #blocked2> | ||
%35 = arith.mulf %34, %33 : tensor<128x128xf32, #blocked2> | ||
%36 = arith.truncf %35 : tensor<128x128xf32, #blocked2> to tensor<128x128xf16, #blocked2> | ||
%37 = arith.addi %0, %c1_i32 : i32 | ||
%38 = arith.muli %37, %c128_i32 : i32 | ||
%42:5 = scf.for %arg22 = %c0_i32 to %38 step %c64_i32 iter_args(%arg23 = %cst_3, %arg24 = %cst_2, %arg25 = %cst_1, %arg26 = %6, %arg27 = %8) -> (tensor<128x128xf32, #mma1>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, !tt.ptr<tensor<128x64xf16, #blocked>, 1>, !tt.ptr<tensor<64x128xf16, #blocked1>, 1>) : i32 { | ||
%59 = tt.load %arg26 {boundaryCheck = array<i32>, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : !tt.ptr<tensor<128x64xf16, #blocked>, 1> -> tensor<128x64xf16, #blocked4> | ||
%60 = tt.load %arg27 {boundaryCheck = array<i32>, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : !tt.ptr<tensor<64x128xf16, #blocked1>, 1> -> tensor<64x128xf16, #blocked2> | ||
%66 = triton_gpu.convert_layout %36 : (tensor<128x128xf16, #blocked2>) -> tensor<128x128xf16, #shared> | ||
%67 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked4>) -> tensor<128x64xf16, #shared1> | ||
%68 = tt.dot %66, %67, %cst {allowTF32 = true, maxNumImpreciseAcc = 0 : i32} : tensor<128x128xf16, #shared> * tensor<128x64xf16, #shared1> -> tensor<128x64xf32, #mma> | ||
%81 = arith.truncf %68 : tensor<128x64xf32, #mma> to tensor<128x64xf16, #mma> | ||
%82 = triton_gpu.convert_layout %60 : (tensor<64x128xf16, #blocked2>) -> tensor<64x128xf16, #shared> | ||
%83 = triton_gpu.convert_layout %81 : (tensor<128x64xf16, #mma>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> | ||
// CHECK-LABEL: triton_nvidia_gpu.dot_async | ||
// CHECK-LABEL-NOT: triton_nvidia_gpu.dot_wait | ||
%84 = tt.dot %83, %82, %arg23 {allowTF32 = true, maxNumImpreciseAcc = 0 : i32} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> * tensor<64x128xf16, #shared> -> tensor<128x128xf32, #mma1> | ||
%85 = arith.mulf %arg24, %arg25 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%87 = arith.addf %85, %arg25 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> | ||
%88 = tt.advance %arg26, [%c0_i32, %c64_i32] : <tensor<128x64xf16, #blocked>, 1> | ||
%89 = tt.advance %arg27, [%c64_i32, %c0_i32] : <tensor<64x128xf16, #blocked1>, 1> | ||
scf.yield %84, %87, %arg25, %88, %89 : tensor<128x128xf32, #mma1>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, !tt.ptr<tensor<128x64xf16, #blocked>, 1>, !tt.ptr<tensor<64x128xf16, #blocked1>, 1> | ||
} | ||
%54 = arith.addi %3, %9 : i32 | ||
%55 = arith.extsi %arg17 : i32 to i64 | ||
%56 = tt.make_tensor_ptr %arg5, [%4, %c128_i64], [%55, %c1_i64], [%54, %c0_i32] {order = array<i32: 1, 0>} : <tensor<128x128xf16, #blocked>, 1> | ||
%57 = arith.truncf %42 : tensor<128x128xf32, #mma1> to tensor<128x128xf16, #mma1> | ||
%58 = triton_gpu.convert_layout %57 : (tensor<128x128xf16, #mma1>) -> tensor<128x128xf16, #blocked2> | ||
tt.store %56, %58 {boundaryCheck = array<i32>, cache = 1 : i32, evict = 1 : i32} : !tt.ptr<tensor<128x128xf16, #blocked>, 1>, tensor<128x128xf16, #blocked2> | ||
tt.return | ||
} | ||
} |