-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss_function.py
134 lines (104 loc) · 4.48 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
import torch
import numpy as np
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FocalLoss(nn.Module):
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha,(float,int,long)): self.alpha = torch.Tensor([alpha,1-alpha])
if isinstance(alpha,list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim()>2:
input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W
input = input.transpose(1,2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C
target = target.view(-1,1)
logpt = F.log_softmax(input)
logpt = logpt.gather(1,target)
logpt = logpt.view(-1)
pt = Variable(logpt.data.exp())
if self.alpha is not None:
if self.alpha.type()!=input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0,target.data.view(-1))
logpt = logpt * Variable(at)
loss = -1 * (1-pt)**self.gamma * logpt
if self.size_average: return loss.mean()
else: return loss.sum()
def get_mask(tscale, duration):
bm_mask = []
for idx in range(duration):
mask_vector = [1 for i in range(tscale - idx)
] + [0 for i in range(idx)]
bm_mask.append(mask_vector)
bm_mask = np.array(bm_mask, dtype=np.float32)
return torch.Tensor(bm_mask)
def bmn_loss_func(pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, bm_mask):
pred_bm_reg = pred_bm[:, 0].contiguous()
pred_bm_cls = pred_bm[:, 1].contiguous()
gt_iou_map = gt_iou_map * bm_mask
pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)
tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end)
loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
return loss, tem_loss, pem_reg_loss, pem_cls_loss
def tem_loss_func(pred_start, pred_end, gt_start, gt_end):
def bi_loss(pred_score, gt_label):
pred_score = pred_score.view(-1)
gt_label = gt_label.view(-1)
pmask = (gt_label > 0.5).float()
num_entries = len(pmask)
num_positive = torch.sum(pmask)
ratio = num_entries / num_positive
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
epsilon = 0.000001
loss_pos = coef_1 * torch.log(pred_score + epsilon) * pmask
loss_neg = coef_0 * torch.log(1.0 - pred_score + epsilon)*(1.0 - pmask)
loss = -1 * torch.mean(loss_pos + loss_neg)
return loss
loss_start = bi_loss(pred_start, gt_start)
loss_end = bi_loss(pred_end, gt_end)
loss = loss_start + loss_end
return loss
def pem_reg_loss_func(pred_score, gt_iou_map, mask):
u_hmask = (gt_iou_map > 0.7).float()
u_mmask = ((gt_iou_map <= 0.7) & (gt_iou_map > 0.3)).float()
u_lmask = ((gt_iou_map <= 0.3) & (gt_iou_map > 0.)).float()
u_lmask = u_lmask * mask
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = num_h / num_m
u_smmask = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda()
u_smmask = u_mmask * u_smmask
u_smmask = (u_smmask > (1. - r_m)).float()
r_l = num_h / num_l
u_slmask = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda()
u_slmask = u_lmask * u_slmask
u_slmask = (u_slmask > (1. - r_l)).float()
weights = u_hmask + u_smmask + u_slmask
loss = F.mse_loss(pred_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(loss * torch.ones(*weights.shape).cuda()) / torch.sum(weights)
return loss
def pem_cls_loss_func(pred_score, gt_iou_map, mask):
pmask = (gt_iou_map > 0.9).float()
nmask = (gt_iou_map <= 0.9).float()
nmask = nmask * mask
num_positive = torch.sum(pmask)
num_entries = num_positive + torch.sum(nmask)
ratio = num_entries / num_positive
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
epsilon = 0.000001
loss_pos = coef_1 * torch.log(pred_score + epsilon) * pmask
loss_neg = coef_0 * torch.log(1.0 - pred_score + epsilon) * nmask
loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries
return loss