Skip to content
/ quickd Public

πŸπŸ’‰ Decorator type-based dependency injection for Python

License

Notifications You must be signed in to change notification settings

vimtor/quickd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

11 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

quickd

Decorator type based dependency injection

GitHub Workflow Status GitHub release (latest by date) GitHub PyPI - Downloads

πŸ“¦ Installation

The package quickd supports Python >= 3.5. You can install it by doing:

$ pip install quickd

πŸ“œ Example

Here is a quick example:

from quickd import inject, factory


class Database:
    pass


class PostgreSQL(Database):
    def __str__(self):
        return 'PostgreSQL'


class MySQL(Database):
    def __str__(self):
        return 'MySQL'


@inject
def print_database(database: Database):
    return print(database)


@factory
def choose_database() -> Database:
    return PostgreSQL()


print_database()  # Prints: PostgreSQL
print_database(MySQL())  # Prints: MySQL

πŸš€ Usage

There are only 3 decorators that compose the whole framework

@factory

  • Registers an instance for a specific type for later use with @inject
  • Is mandatory to annotate the function with the return type of the class that you want to inject later
  • It is not dynamic, so the implementation can only be chosen once
from quickd import factory


@factory
def choose_database() -> Database:
    return PostgreSQL()

@inject

  • Injects dependencies to a function by matching its arguments types with what has been registered
  • As you can see below, it also works with constructors
from quickd import inject


@inject
def print_database(database: Database):
    return print(database)


class UserService:
    @inject
    def __init__(self, database: Database): pass

@service

  • Registers a class to be later injectable without using @factory
  • It also applies @inject to its constructor
from quickd import service, inject


@service
class UserService:
    def __init__(self):
        self.users = ['Bob', 'Tom']

    def all(self):
        return self.users

    def add(self, user):
        self.users.append(user)


@inject
def get_users(service: UserService):
    return service.all()


@inject
def add_user(service: UserService):
    return service.add("Pol")


get_users()  # ['Bob', 'Tom']
add_user()
get_users()  # ['Bob', 'Tom', 'Pol']

πŸ‘¨β€πŸ³ Recipes

Here are some common solutions to scenarios you will face.

Interfaces

from abc import abstractmethod
from quickd import inject, factory


class UserRepository:
    @abstractmethod
    def save(self, user):
        pass

    @abstractmethod
    def search(self, id):
        pass


class UserCreator:
    @inject
    def __int__(self, repository: UserRepository):
        self.repository = repository

    def create(self, user):
        self.repository.save(user)


class MySQLUserRepository(UserRepository):
    def __int__(self, host, password):
        self.sql = MySQLConnection(host, password)

    def save(self, user):
        self.sql.execute('INSERT ...')

    def search(self, id):
        self.sql.execute('SELECT ...')


@factory
def choose_user_repository() -> UserRepository:  # Notice super class is being used
    return MySQLUserRepository('user', '123')

Testing

Following the above example we can create a unit test mocking the persistance, which will make our tests easier and faster.

fake_user = {'id': 1, 'name': 'Tom'}


class FakeUserRepository(UserRepository):
    def save(self, user):
        assert user == fake_user


repository = FakeUserRepository()
user_creator = UserCreator(repository)

user_creator.create(fake_user)

Configuration

There are multiple ways to configure your classes. A simple approach is to use environment variables on your factory annotated methods.

import os
from quickd import factory


@factory
def choose_database() -> Database:
    username = os.environ.get("POSTGRES_USER")
    password = os.environ.get("POSTGRES_PASS")
    return PostgreSQL(username, password)

🧠 Motivation

Dependency injection provides a great way to decouple your classes in order to improve testability and maintainability.

Frameworks like Spring or Symfony are loved by the community.

I will just add a parameter to the constructor and Spring will fill with a global instance of the class

These frameworks rely heavy on the type system, to know which class should go where.

From Python 3.5 we have the typing package. This addition allows us to have the dependency injection framework that Python deserves.