- Clone the MLflow Pipelines template repo locally:
git clone https://github.com/mlflow/mlp-regression-template.git
. - Enter the root of the template:
cd mlp-regression-template
. - Install required packages:
pip install mlflow-1.24.1.dev0-py3-none-any.whl && pip install -r requirements.txt
To log pipeline runs to a particular MLflow experiment,
- Open
profiles/databricks.yaml
orprofiles/local.yaml
, depending on your running environment. - Uncomment the
experiment
section, specify the name of the experiment.
Sync this repo and run notebooks/databricks
on an DBR 11.x cluster with workspace files support enabled.
Note We recommend to open at least 3 browser tabs to facilitate easier development:
- One tab for pipeline.yaml
- One tab for changing step function defined in steps/{step}.py
- One tab for the driver notebook (notebooks/databricks)
You should be able to find experiments and runs on the Databricks ML Experiments page.
Launch Jupyter Lab via command jupyter-lab
Open notebooks/jupyter.ipynb
under the current Python environment.
First cd
to the template root directory. Then try the following MLflow commands to get started.
Note that step_name
is optional:
running pipeline commands without specifying the step_name
parameter will act on the entire pipeline.
mlflow pipelines --help
mlflow pipelines inspect --step step_name
mlflow pipelines run --step step_name
mlflow pipelines clean --step step_name
To check MLflow experiment and runs from pipeline execution, try the following command from the template root directory.
mlflow ui --backend-store-uri sqlite:///metadata/mlflow/mlruns.db --default-artifact-root ./metadata/mlflow/mlartifacts --host localhost -p 5001
Then open a browser tab pointing to http://127.0.0.1:5001