This repo contains source code and data to reproduce the results in the research paper ReFT: Reasoning with REinforced Fine-Tuning
Main script: train_sft_model.py
Run SFT:
bash exps/paper_exps/SFT/gsm8k.sh # or svamp, mathqa
Main script: train_rl_reft.py
Run ReFT:
bash exps/paper_exps/ReFT/gsm8k.sh # or svamp, mathqa
Main script: train_rl_sl.py
Run Online-SL:
bash exps/paper_exps/OnSL/gsm8k.sh # or svamp, mathqa
Main script: train_sl_model.py
First, use one of the checkpoint and run sampling:
bash exps/paper_exps/Sampling/gsm8k.sh # or svamp, mathqa
Then configure the train data path and run Offline-SL:
bash exps/paper_exps/OffSL/gsm8k.sh # or svamp, mathqa
Main script: sampling.py
Configure variables e.g num_return_sequences=100, do_sample=1.0 for voting@100, then run sampling:
bash exps/paper_exps/Sampling/gsm8k.sh # or svamp, mathqa
Main script: train_reward_model.py
First, use one of the (earlier) checkpoint to run sampling on the train set and use the best checkpoint to run sampling on the test set.
bash exps/paper_exps/Sampling/gsm8k.sh
bash exps/paper_exps/Sampling/gsm8k_test.sh # or gsm8k_reft_test
Configure the data path and train the rerank model:
bash exps/paper_exps/Rerank/gsm8k.sh # or gsm8k_reft
We provide checkpoints for some Galactica and Codellama models at different stages: warmup-SFT, SFT, SFT-Rerank, ReFT and ReFT-Rerank
- Codellama-7b-hf-SFT-warmup-GSM8k
- Codellama-7b-hf-SFT-GSM8k
- Codellama-7b-hf-SFT-Rerank-GSM8k
- Codellama-7b-hf-ReFT-GSM8k
- Codellama-7b-hf-ReFT-Rerank-GSM8k
- galactica-6.7b-SFT-warmup-GSM8k
- galactica-6.7b-SFT-GSM8k
- galactica-6.7b-SFT-Rerank-GSM8k
- galactica-6.7b-ReFT-GSM8k
- galactica-6.7b-ReFT-Rerank-GSM8k
Note: Our models are tuned based on Codellama and Galactica, thus, licenses applicable to Codellama and Galactica, such as Llama license and non-commercial CC BY-NC 4.0 license, also hold on these models
See evaluations results of the models at table 4 of the research paper.
Updated results:
Top-1 | Voting@100 | Rerank@100 | |
---|---|---|---|
Codellama-7b-hf-SFT-warmup-GSM8k | 63.00 | - | - |
Codellama-7b-hf-SFT-GSM8k (+Codellama-7b-hf-SFT-Rerank-GSM8k) |
63.68 | 68.0 | 77.0 |
Codellama-7b-hf-ReFT-GSM8k (+Codellama-7b-hf-ReFT-Rerank-GSM8k) |
75.28 | 78.0 | 81.2 |
galactica-6.7b-SFT-warmup-GSM8k | 48.37 | - | - |
galactica-6.7b-SFT-GSM8k (+galactica-6.7b-SFT-Rerank-GSM8k) |
58.83 | 62.9 | 73.4 |
galactica-6.7b-ReFT-GSM8k (+galactica-6.7b-ReFT-Rerank-GSM8k) |
68.91 | 71.9 | 76.4 |
Please cite the paper if you use our data, model or code.
@inproceedings{luong2024reft,
title={ReFT: Reasoning with Reinforced Fine-Tuning},
author={Luong, Trung Quoc and Zhang, Xinbo and Jie, Zhanming and Sun, Peng and Jin, Xiaoran and Li, Hang},
year={2024},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics},
url={https://arxiv.org/abs/2404.03592}
}