Skip to content

wshi/mwp_ReFT

 
 

Repository files navigation

ReFT: Reasoning with REinforced Fine-Tuning

This repo contains source code and data to reproduce the results in the research paper ReFT: Reasoning with REinforced Fine-Tuning

Instruction

SFT

Main script: train_sft_model.py

Run SFT:

bash exps/paper_exps/SFT/gsm8k.sh # or svamp, mathqa

ReFT

Main script: train_rl_reft.py

Run ReFT:

bash exps/paper_exps/ReFT/gsm8k.sh # or svamp, mathqa

Online-SL

Main script: train_rl_sl.py

Run Online-SL:

bash exps/paper_exps/OnSL/gsm8k.sh # or svamp, mathqa

Offline-SL

Main script: train_sl_model.py

First, use one of the checkpoint and run sampling:

bash exps/paper_exps/Sampling/gsm8k.sh # or svamp, mathqa

Then configure the train data path and run Offline-SL:

bash exps/paper_exps/OffSL/gsm8k.sh # or svamp, mathqa

Top-1 and voting Acc

Main script: sampling.py

Configure variables e.g num_return_sequences=100, do_sample=1.0 for voting@100, then run sampling:

bash exps/paper_exps/Sampling/gsm8k.sh # or svamp, mathqa

Reranking

Main script: train_reward_model.py

First, use one of the (earlier) checkpoint to run sampling on the train set and use the best checkpoint to run sampling on the test set.

bash exps/paper_exps/Sampling/gsm8k.sh 
bash exps/paper_exps/Sampling/gsm8k_test.sh # or gsm8k_reft_test

Configure the data path and train the rerank model:

bash exps/paper_exps/Rerank/gsm8k.sh # or gsm8k_reft

Checkpoints

We provide checkpoints for some Galactica and Codellama models at different stages: warmup-SFT, SFT, SFT-Rerank, ReFT and ReFT-Rerank

Note: Our models are tuned based on Codellama and Galactica, thus, licenses applicable to Codellama and Galactica, such as Llama license and non-commercial CC BY-NC 4.0 license, also hold on these models

Evaluation Results

See evaluations results of the models at table 4 of the research paper.

Updated results:

Top-1 Voting@100 Rerank@100
Codellama-7b-hf-SFT-warmup-GSM8k 63.00 - -
Codellama-7b-hf-SFT-GSM8k
(+Codellama-7b-hf-SFT-Rerank-GSM8k)
63.68 68.0 77.0
Codellama-7b-hf-ReFT-GSM8k
(+Codellama-7b-hf-ReFT-Rerank-GSM8k)
75.28 78.0 81.2
galactica-6.7b-SFT-warmup-GSM8k 48.37 - -
galactica-6.7b-SFT-GSM8k
(+galactica-6.7b-SFT-Rerank-GSM8k)
58.83 62.9 73.4
galactica-6.7b-ReFT-GSM8k
(+galactica-6.7b-ReFT-Rerank-GSM8k)
68.91 71.9 76.4

License:

Apache2.0 License

Citation

Please cite the paper if you use our data, model or code.

@inproceedings{luong2024reft,
      title={ReFT: Reasoning with Reinforced Fine-Tuning}, 
      author={Luong, Trung Quoc and Zhang, Xinbo and Jie, Zhanming and Sun, Peng and Jin, Xiaoran and Li, Hang},
      year={2024},
      booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics},
      url={https://arxiv.org/abs/2404.03592}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 71.7%
  • Shell 28.3%