Skip to content

xetdata/pyxet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

No Maintenance Intended

[DEPRECATED] pyxet - The SDK for XetHub

XetHub has joined Hugging Face 🤗. Follow our work to improve large scale collaboration on Hugging Face Hub.


pyxet is a Python library that provides a pythonic interface for XetHub. Xethub is simple git-based system capable of storing TBs of ML data and models in a single repository, with block-level data deduplication that enables hundreds of versions of similar data to be stored without requiring much storage.

License

BSD 3

Features

Pyxet has 3 components:

  1. A fsspec interface that allows compatible libraries such as Pandas, Polars and Duckdb to directly access any version of any file in a Xet repository. See below for some examples.

  2. A command line interface inspired by AWSCLI that allows files to be uploaded to and downloaded from Xet repository conveniently and efficiently.

  3. A file system mount mechanism that allows any version of any Xet repository to be mounted. This works on Mac, Linux, and Windows 11 Pro.

For API documentation and full examples, please see here.

Installation

Set up your virtualenv with:

$ python -m venv .venv
$ . .venv/bin/activate

Then, install pyxet with:

$ pip install pyxet

Authentication

Signup on XetHub and obtain a username and access token. You should write this down.

There are three ways to authenticate with XetHub:

Command Line

xet login -e <email> -u <username> -p <personal_access_token>

Xet login will write authentication information to ~/.xetconfig

Environment Variable

Environment variables may be sometimes more convenient:

export XET_USER_EMAIL = <email>
export XET_USER_NAME = <username>
export XET_USER_TOKEN = <personal_access_token>

In Python

Finally if in a notebook environment, or a non-persistent environment, we also provide a method to authenticate directly from Python. Note that this must be the first thing you run before any other operation:

import pyxet
pyxet.login(<username>, <personal_access_token>, <email>)

Usage

We have, a few basic usage examples here. For complete documentation please see here.

Our examples are based on a small Titanic dataset you can see and explore here.

Reading Files and Accessing Repos

A XetHub URL for pyxet is in the form:

xet://<endpoint>:<repo_owner>/<repo_name>/<branch>/<path_to_file>

Use our public xethub.com endpoint unless you're on a custom enterprise deployment.

Reading files from pyxet is easy: pyxet.open on a Xet path will return a python file-like object which you can directly read from.

import pyxet            
print(pyxet.open('xet://xethub.com:XetHub/titanic/main/README.md').readlines())

Pandas Integration

FSSpec integration means that many libraries support reading from Xethub directly. For instance: we can easily read the CSV file directly into a Pandas dataframe:

import pyxet            # make xet:// protocol available
import pandas as pd     # assumes pip install pandas has been run

df = pd.read_csv('xet://xethub.com:XetHub/titanic/main/titanic.csv')
df

This should return something like:

Out[3]:
     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked
0              1         0       3  ...   7.2500   NaN         S
1              2         1       1  ...  71.2833   C85         C
2              3         1       3  ...   7.9250   NaN         S
3              4         1       1  ...  53.1000  C123         S
4              5         0       3  ...   8.0500   NaN         S
..           ...       ...     ...  ...      ...   ...       ...
886          887         0       2  ...  13.0000   NaN         S
887          888         1       1  ...  30.0000   B42         S
888          889         0       3  ...  23.4500   NaN         S
889          890         1       1  ...  30.0000  C148         C
890          891         0       3  ...   7.7500   NaN         Q

[891 rows x 12 columns]

Working with a Blob Store

The XetFS object in Pyxet implements all the fsspec API For instance, you can list folders with:

fs = pyxet.XetFS()
print(fs.listdir('xethub/titanic/main'))

Which should output something like the following:

[{'name': 'xethub/titanic/main/.gitattributes', 'size': 79, 'type': 'file'},
{'name': 'xethub/titanic/main/data', 'size': 0, 'type': 'directory'},
{'name': 'xethub/titanic/main/readme.md', 'size': 58, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.csv', 'size': 61194, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.json', 'size': 165682, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.parquet',
'size': 27175,
'type': 'file'}]

Here are some other simple ways to access information from an existing repository:

import pyxet

fs = pyxet.XetFS()  # fsspec filesystem

fs.info("xethub/titanic/main/titanic.csv")
# returns repo level info: {'name': 'https://xethub.com/xethub/titanic/titanic.csv', 'size': 61194, 'type': 'file'}

fs.open("xethub/titanic/main/titanic.csv", 'r').read(20)
# returns first 20 characters: 'PassengerId,Survived'

fs.get("xethub/titanic/main/data/", "data", recursive=True)
# download remote directory recursively into a local data folder

fs.ls("xethub/titanic/main/data/", detail=False)
# returns ['data/titanic_0.parquet', 'data/titanic_1.parquet']

Pyxet also allows you to write to repositories with Git versioning.

Writing files with Pyxet

To write files with pyxet, you need to first make a repository you have access to. An easy thing you can do is to simply fork the titanic repo. You can do so with

xet repo fork xet://xethub.com:XetHub/titanic

(see the Xet CLI documentation below)

This will create a private version of the titanic repository under xet://xethub.com:<username>/titanic.

Unlike typical blob stores, XetHub writes are transactional. This means the entire write succeeds, or the entire write fails (there is a transaction limit of about 1024 files).

import pyxet
fs = pyxet.XetFS()
user_name = <user_name>
with fs.transaction as tr:
    tr.set_commit_message("hello world")
    f = fs.open(f"{user_name}/titanic/main/hello_world.txt", 'w')
    f.write("hello world")
    f.close()

If you navigate to your titanic repository on XetHub, you'll see the new hello_world.txt.

Xet CLI

The Xet Command line is the easiest way to interact with a Xet repository.

Listing and time travel

You can browse the repository with:

xet ls xet://xethub.com:<username>/titanic/main

You can even browse it at any point in history (say 5 minutes ago) with:

xet ls xet://xethub.com:<username>/titanic/main@{5.minutes.ago}

Downloading

This syntax works everywhere, you can download files with xet cp

# syntax is similar to AWS CLI 
xet cp xet://xethub.com:<username>/titanic/main/<path> <local_path>
xet cp xet://xethub.com:<username>/titanic/main@{5.minutes.ago}/<path> <local_path>

And you can also use xet cp to upload files:

Uploading

xet cp <file/directory> xet://xethub.com:<username>/titanic/main/<path>

Of course, you cannot rewrite history, so uploading to main@{5.minutes.ago} is prohibited.

Branches

You can easily create branches for collaboration:

xet branch make xet://xethub.com:<username>/titanic main another_branch

This is fast regardless of the size of the repo.

Copying across repos and branches

Copying across branches are efficient, and can be used to restore a historical copy of a file which you accidentally overwrote:

# copying across branch
xet cp xet://xethub.com:<username>/titanic/branch/<file> xet://xethub.com:<username>/titanic/main/<file>
# copying from history to current
xet cp xet://xethub.com:<username>/titanic/main@{5.minutes.ago}/<file> xet://xethub.com:<username>/titanic/main/<file>

S3, GCP, etc

Xet CLI understand every protocol FSSpec does. So all the commands above work with S3, GCP and many other protocols too. You can also use Xet CLI to directly upload and download data from S3 to XetHub:

$ xet cp xet://... s3://...
$ xet cp s3://... xet://...