XetHub has joined Hugging Face 🤗. Follow our work to improve large scale collaboration on Hugging Face Hub.
pyxet is a Python library that provides a pythonic interface for XetHub. Xethub is simple git-based system capable of storing TBs of ML data and models in a single repository, with block-level data deduplication that enables hundreds of versions of similar data to be stored without requiring much storage.
Pyxet has 3 components:
-
A fsspec interface that allows compatible libraries such as Pandas, Polars and Duckdb to directly access any version of any file in a Xet repository. See below for some examples.
-
A command line interface inspired by AWSCLI that allows files to be uploaded to and downloaded from Xet repository conveniently and efficiently.
-
A file system mount mechanism that allows any version of any Xet repository to be mounted. This works on Mac, Linux, and Windows 11 Pro.
For API documentation and full examples, please see here.
Set up your virtualenv with:
$ python -m venv .venv
$ . .venv/bin/activate
Then, install pyxet with:
$ pip install pyxet
Signup on XetHub and obtain a username and access token. You should write this down.
There are three ways to authenticate with XetHub:
xet login -e <email> -u <username> -p <personal_access_token>
Xet login will write authentication information to ~/.xetconfig
Environment variables may be sometimes more convenient:
export XET_USER_EMAIL = <email>
export XET_USER_NAME = <username>
export XET_USER_TOKEN = <personal_access_token>
Finally if in a notebook environment, or a non-persistent environment, we also provide a method to authenticate directly from Python. Note that this must be the first thing you run before any other operation:
import pyxet
pyxet.login(<username>, <personal_access_token>, <email>)
We have, a few basic usage examples here. For complete documentation please see here.
Our examples are based on a small Titanic dataset you can see and explore here.
A XetHub URL for pyxet is in the form:
xet://<endpoint>:<repo_owner>/<repo_name>/<branch>/<path_to_file>
Use our public xethub.com
endpoint unless you're on a custom enterprise deployment.
Reading files from pyxet is easy: pyxet.open
on a Xet path will return a
python file-like object which you can directly read from.
import pyxet
print(pyxet.open('xet://xethub.com:XetHub/titanic/main/README.md').readlines())
FSSpec integration means that many libraries support reading from Xethub directly. For instance: we can easily read the CSV file directly into a Pandas dataframe:
import pyxet # make xet:// protocol available
import pandas as pd # assumes pip install pandas has been run
df = pd.read_csv('xet://xethub.com:XetHub/titanic/main/titanic.csv')
df
This should return something like:
Out[3]:
PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
.. ... ... ... ... ... ... ...
886 887 0 2 ... 13.0000 NaN S
887 888 1 1 ... 30.0000 B42 S
888 889 0 3 ... 23.4500 NaN S
889 890 1 1 ... 30.0000 C148 C
890 891 0 3 ... 7.7500 NaN Q
[891 rows x 12 columns]
The XetFS
object in Pyxet implements all the fsspec
API For instance, you can list folders with:
fs = pyxet.XetFS()
print(fs.listdir('xethub/titanic/main'))
Which should output something like the following:
[{'name': 'xethub/titanic/main/.gitattributes', 'size': 79, 'type': 'file'},
{'name': 'xethub/titanic/main/data', 'size': 0, 'type': 'directory'},
{'name': 'xethub/titanic/main/readme.md', 'size': 58, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.csv', 'size': 61194, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.json', 'size': 165682, 'type': 'file'},
{'name': 'xethub/titanic/main/titanic.parquet',
'size': 27175,
'type': 'file'}]
Here are some other simple ways to access information from an existing repository:
import pyxet
fs = pyxet.XetFS() # fsspec filesystem
fs.info("xethub/titanic/main/titanic.csv")
# returns repo level info: {'name': 'https://xethub.com/xethub/titanic/titanic.csv', 'size': 61194, 'type': 'file'}
fs.open("xethub/titanic/main/titanic.csv", 'r').read(20)
# returns first 20 characters: 'PassengerId,Survived'
fs.get("xethub/titanic/main/data/", "data", recursive=True)
# download remote directory recursively into a local data folder
fs.ls("xethub/titanic/main/data/", detail=False)
# returns ['data/titanic_0.parquet', 'data/titanic_1.parquet']
Pyxet also allows you to write to repositories with Git versioning.
To write files with pyxet, you need to first make a repository you have access to. An easy thing you can do is to simply fork the titanic repo. You can do so with
xet repo fork xet://xethub.com:XetHub/titanic
(see the Xet CLI documentation below)
This will create a private version of the titanic repository under xet://xethub.com:<username>/titanic
.
Unlike typical blob stores, XetHub writes are transactional. This means the entire write succeeds, or the entire write fails (there is a transaction limit of about 1024 files).
import pyxet
fs = pyxet.XetFS()
user_name = <user_name>
with fs.transaction as tr:
tr.set_commit_message("hello world")
f = fs.open(f"{user_name}/titanic/main/hello_world.txt", 'w')
f.write("hello world")
f.close()
If you navigate to your titanic repository on XetHub, you'll see the new
hello_world.txt
.
The Xet Command line is the easiest way to interact with a Xet repository.
You can browse the repository with:
xet ls xet://xethub.com:<username>/titanic/main
You can even browse it at any point in history (say 5 minutes ago) with:
xet ls xet://xethub.com:<username>/titanic/main@{5.minutes.ago}
This syntax works everywhere, you can download files with xet cp
# syntax is similar to AWS CLI
xet cp xet://xethub.com:<username>/titanic/main/<path> <local_path>
xet cp xet://xethub.com:<username>/titanic/main@{5.minutes.ago}/<path> <local_path>
And you can also use xet cp
to upload files:
xet cp <file/directory> xet://xethub.com:<username>/titanic/main/<path>
Of course, you cannot rewrite history, so uploading to main@{5.minutes.ago}
is prohibited.
You can easily create branches for collaboration:
xet branch make xet://xethub.com:<username>/titanic main another_branch
This is fast regardless of the size of the repo.
Copying across branches are efficient, and can be used to restore a historical copy of a file which you accidentally overwrote:
# copying across branch
xet cp xet://xethub.com:<username>/titanic/branch/<file> xet://xethub.com:<username>/titanic/main/<file>
# copying from history to current
xet cp xet://xethub.com:<username>/titanic/main@{5.minutes.ago}/<file> xet://xethub.com:<username>/titanic/main/<file>
Xet CLI understand every protocol FSSpec does. So all the commands above work with S3, GCP and many other protocols too. You can also use Xet CLI to directly upload and download data from S3 to XetHub:
$ xet cp xet://... s3://...
$ xet cp s3://... xet://...