-
Notifications
You must be signed in to change notification settings - Fork 165
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add tool to analyze log * minor fix * plot multi keys, use subparser, modify code * add two method add_plot_parser and add_time_parser, minor fix * minor fix * move add parser func outside main * move subparser.add inside add parser func
- Loading branch information
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
import argparse | ||
import json | ||
from collections import defaultdict | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import seaborn as sns | ||
|
||
|
||
def cal_train_time(log_dicts, args): | ||
for i, log_dict in enumerate(log_dicts): | ||
print('{}Analyze train time of {}{}'.format('-' * 5, args.json_logs[i], | ||
'-' * 5)) | ||
all_times = [] | ||
for epoch in log_dict.keys(): | ||
if args.include_outliers: | ||
all_times.append(log_dict[epoch]['time']) | ||
else: | ||
all_times.append(log_dict[epoch]['time'][1:]) | ||
all_times = np.array(all_times) | ||
epoch_ave_time = all_times.mean(-1) | ||
slowest_epoch = epoch_ave_time.argmax() | ||
fastest_epoch = epoch_ave_time.argmin() | ||
std_over_epoch = epoch_ave_time.std() | ||
print('slowest epoch {}, average time is {:.4f}'.format( | ||
slowest_epoch + 1, epoch_ave_time[slowest_epoch])) | ||
print('fastest epoch {}, average time is {:.4f}'.format( | ||
fastest_epoch + 1, epoch_ave_time[fastest_epoch])) | ||
print('time std over epochs is {:.4f}'.format(std_over_epoch)) | ||
print('average iter time: {:.4f} s/iter'.format(np.mean(all_times))) | ||
print() | ||
|
||
|
||
def plot_curve(log_dicts, args): | ||
if args.backend is not None: | ||
plt.switch_backend(args.backend) | ||
sns.set_style(args.style) | ||
# if legend is None, use {filename}_{key} as legend | ||
legend = args.legend | ||
if legend is None: | ||
legend = [] | ||
for json_log in args.json_logs: | ||
for metric in args.keys: | ||
legend.append('{}_{}'.format(json_log, metric)) | ||
assert len(legend) == (len(args.json_logs) * len(args.keys)) | ||
metrics = args.keys | ||
|
||
num_metrics = len(metrics) | ||
for i, log_dict in enumerate(log_dicts): | ||
epochs = list(log_dict.keys()) | ||
for j, metric in enumerate(metrics): | ||
print('plot curve of {}, metric is {}'.format( | ||
args.json_logs[i], metric)) | ||
assert metric in log_dict[ | ||
epochs[0]], '{} does not contain metric {}'.format( | ||
args.json_logs[i], metric) | ||
|
||
if 'mAP' in metric: | ||
xs = np.arange(1, max(epochs) + 1) | ||
ys = [] | ||
for epoch in epochs: | ||
ys += log_dict[epoch][metric] | ||
ax = plt.gca() | ||
ax.set_xticks(xs) | ||
plt.xlabel('epoch') | ||
plt.plot(xs, ys, label=legend[i * num_metrics + j], marker='o') | ||
else: | ||
xs = [] | ||
ys = [] | ||
num_iters_per_epoch = log_dict[epochs[0]]['iter'][-1] | ||
for epoch in epochs: | ||
iters = log_dict[epoch]['iter'] | ||
if log_dict[epoch]['mode'][-1] == 'val': | ||
iters = iters[:-1] | ||
xs.append( | ||
np.array(iters) + (epoch - 1) * num_iters_per_epoch) | ||
ys.append(np.array(log_dict[epoch][metric][:len(iters)])) | ||
xs = np.concatenate(xs) | ||
ys = np.concatenate(ys) | ||
plt.xlabel('iter') | ||
plt.plot( | ||
xs, ys, label=legend[i * num_metrics + j], linewidth=0.5) | ||
plt.legend() | ||
if args.title is not None: | ||
plt.title(args.title) | ||
if args.out is None: | ||
plt.show() | ||
else: | ||
print('save curve to: {}'.format(args.out)) | ||
plt.savefig(args.out) | ||
plt.cla() | ||
|
||
|
||
def add_plot_parser(subparsers): | ||
parser_plt = subparsers.add_parser( | ||
'plot_curve', help='parser for plotting curves') | ||
parser_plt.add_argument( | ||
'json_logs', | ||
type=str, | ||
nargs='+', | ||
help='path of train log in json format') | ||
parser_plt.add_argument( | ||
'--keys', | ||
type=str, | ||
nargs='+', | ||
default=['bbox_mAP'], | ||
help='the metric that you want to plot') | ||
parser_plt.add_argument('--title', type=str, help='title of figure') | ||
parser_plt.add_argument( | ||
'--legend', | ||
type=str, | ||
nargs='+', | ||
default=None, | ||
help='legend of each plot') | ||
parser_plt.add_argument( | ||
'--backend', type=str, default=None, help='backend of plt') | ||
parser_plt.add_argument( | ||
'--style', type=str, default='dark', help='style of plt') | ||
parser_plt.add_argument('--out', type=str, default=None) | ||
|
||
|
||
def add_time_parser(subparsers): | ||
parser_time = subparsers.add_parser( | ||
'cal_train_time', | ||
help='parser for computing the average time per training iteration') | ||
parser_time.add_argument( | ||
'json_logs', | ||
type=str, | ||
nargs='+', | ||
help='path of train log in json format') | ||
parser_time.add_argument( | ||
'--include-outliers', | ||
action='store_true', | ||
help='include the first value of every epoch when computing ' | ||
'the average time') | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='Analyze Json Log') | ||
# currently only support plot curve and calculate average train time | ||
subparsers = parser.add_subparsers(dest='task', help='task parser') | ||
add_plot_parser(subparsers) | ||
add_time_parser(subparsers) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def load_json_logs(json_logs): | ||
# load and convert json_logs to log_dict, key is epoch, value is a sub dict | ||
# keys of sub dict is different metrics, e.g. memory, bbox_mAP | ||
# value of sub dict is a list of corresponding values of all iterations | ||
log_dicts = [dict() for _ in json_logs] | ||
for json_log, log_dict in zip(json_logs, log_dicts): | ||
with open(json_log, 'r') as log_file: | ||
for l in log_file: | ||
log = json.loads(l.strip()) | ||
epoch = log.pop('epoch') | ||
if epoch not in log_dict: | ||
log_dict[epoch] = defaultdict(list) | ||
for k, v in log.items(): | ||
log_dict[epoch][k].append(v) | ||
return log_dicts | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
json_logs = args.json_logs | ||
for json_log in json_logs: | ||
assert json_log.endswith('.json') | ||
|
||
log_dicts = load_json_logs(json_logs) | ||
|
||
eval(args.task)(log_dicts, args) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |