-
Notifications
You must be signed in to change notification settings - Fork 165
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:open-mmlab/mmdetection
- Loading branch information
Showing
30 changed files
with
724 additions
and
87 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# model settings | ||
model = dict( | ||
type='FasterRCNN', | ||
pretrained='modelzoo://resnet50', | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
style='pytorch'), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=5), | ||
rpn_head=dict( | ||
type='RPNHead', | ||
in_channels=256, | ||
feat_channels=256, | ||
anchor_scales=[8], | ||
anchor_ratios=[0.5, 1.0, 2.0], | ||
anchor_strides=[4, 8, 16, 32, 64], | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[1.0, 1.0, 1.0, 1.0], | ||
use_sigmoid_cls=True), | ||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), | ||
out_channels=256, | ||
featmap_strides=[4, 8, 16, 32]), | ||
bbox_head=dict( | ||
type='SharedFCBBoxHead', | ||
num_fcs=2, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=81, | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.1, 0.1, 0.2, 0.2], | ||
reg_class_agnostic=False)) | ||
# model training and testing settings | ||
train_cfg = dict( | ||
rpn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.3, | ||
min_pos_iou=0.3, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=256, | ||
pos_fraction=0.5, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=False), | ||
allowed_border=0, | ||
pos_weight=-1, | ||
smoothl1_beta=1 / 9.0, | ||
debug=False), | ||
rcnn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.5, | ||
min_pos_iou=0.5, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='OHEMSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False)) | ||
test_cfg = dict( | ||
rpn=dict( | ||
nms_across_levels=False, | ||
nms_pre=2000, | ||
nms_post=2000, | ||
max_num=2000, | ||
nms_thr=0.7, | ||
min_bbox_size=0), | ||
rcnn=dict( | ||
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) | ||
# soft-nms is also supported for rcnn testing | ||
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) | ||
) | ||
# dataset settings | ||
dataset_type = 'CocoDataset' | ||
data_root = 'data/coco/' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
data = dict( | ||
imgs_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_train2017.json', | ||
img_prefix=data_root + 'train2017/', | ||
img_scale=(1333, 800), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0.5, | ||
with_mask=False, | ||
with_crowd=True, | ||
with_label=True), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
img_scale=(1333, 800), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0, | ||
with_mask=False, | ||
with_crowd=True, | ||
with_label=True), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
img_scale=(1333, 800), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0, | ||
with_mask=False, | ||
with_label=False, | ||
test_mode=True)) | ||
# optimizer | ||
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) | ||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
step=[8, 11]) | ||
checkpoint_config = dict(interval=1) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
# yapf:enable | ||
# runtime settings | ||
total_epochs = 12 | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# model settings | ||
model = dict( | ||
type='FasterRCNN', | ||
pretrained='modelzoo://resnet50', | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
style='pytorch'), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=5), | ||
rpn_head=dict( | ||
type='RPNHead', | ||
in_channels=256, | ||
feat_channels=256, | ||
anchor_scales=[8], | ||
anchor_ratios=[0.5, 1.0, 2.0], | ||
anchor_strides=[4, 8, 16, 32, 64], | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[1.0, 1.0, 1.0, 1.0], | ||
use_sigmoid_cls=True), | ||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), | ||
out_channels=256, | ||
featmap_strides=[4, 8, 16, 32]), | ||
bbox_head=dict( | ||
type='SharedFCBBoxHead', | ||
num_fcs=2, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=21, | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.1, 0.1, 0.2, 0.2], | ||
reg_class_agnostic=False)) | ||
# model training and testing settings | ||
train_cfg = dict( | ||
rpn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.3, | ||
min_pos_iou=0.3, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=256, | ||
pos_fraction=0.5, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=False), | ||
allowed_border=0, | ||
pos_weight=-1, | ||
smoothl1_beta=1 / 9.0, | ||
debug=False), | ||
rcnn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.5, | ||
min_pos_iou=0.5, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False)) | ||
test_cfg = dict( | ||
rpn=dict( | ||
nms_across_levels=False, | ||
nms_pre=2000, | ||
nms_post=2000, | ||
max_num=2000, | ||
nms_thr=0.7, | ||
min_bbox_size=0), | ||
rcnn=dict( | ||
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) | ||
# soft-nms is also supported for rcnn testing | ||
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) | ||
) | ||
# dataset settings | ||
dataset_type = 'VOCDataset' | ||
data_root = 'data/VOCdevkit/' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
data = dict( | ||
imgs_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type='RepeatDataset', # to avoid reloading datasets frequently | ||
times=3, | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=[ | ||
data_root + 'VOC2007/ImageSets/Main/trainval.txt', | ||
data_root + 'VOC2012/ImageSets/Main/trainval.txt' | ||
], | ||
img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'], | ||
img_scale=(1000, 600), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0.5, | ||
with_mask=False, | ||
with_crowd=True, | ||
with_label=True)), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', | ||
img_prefix=data_root + 'VOC2007/', | ||
img_scale=(1000, 600), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0, | ||
with_mask=False, | ||
with_crowd=True, | ||
with_label=True), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', | ||
img_prefix=data_root + 'VOC2007/', | ||
img_scale=(1000, 600), | ||
img_norm_cfg=img_norm_cfg, | ||
size_divisor=32, | ||
flip_ratio=0, | ||
with_mask=False, | ||
with_label=False, | ||
test_mode=True)) | ||
# optimizer | ||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) | ||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# learning policy | ||
lr_config = dict(policy='step', step=[3]) # actual epoch = 3 * 3 = 9 | ||
checkpoint_config = dict(interval=1) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
# yapf:enable | ||
# runtime settings | ||
total_epochs = 4 # actual epoch = 4 * 3 = 12 | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x_voc0712' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.