Skip to content

zhaozhengjuan/yolov3_tensorflow_python3

 
 

Repository files navigation

Initial with Darknet53-448.weights

Performance(Better performance than Tencent's reimplementation)

train dataset: VOC 2012 + VOC 2007
test dataset: VOC 2007
test size: 544
test code: Faster rcnn (not use 07 metric)
test score threshold: 0.01

modelmAPdeltarelease
baseline73.30.0yes
data agumentation76.9+3.6yes
multi scale train79.3+2.4yes
focal loss80.6+1.3yes
group normalizationxxx-0.5yes
soft nmsxxx-0.6yes
mix up81.7+1.1yes
label smooth82.1+0.4yes
cosine learning rate83.1+1.0yes
GIOU83.3+0.2yes
remove anchor83.30yes
multi scale test85.82.5yes

Usage

  1. clone YOLO_v3 repository

    git clone https://github.com/qq751220449/yolov3_tensorflow_python3.git
  2. prepare data
    (1) prepare datasets

    cd utils
    python voc.py
  3. prepare initial weights
    Download darknet53_448.weights firstly, put the initial weights into darknet2tf/, and then

    cd darknet2tf
    python3 convert_weights.py --weights_file=darknet53_448.weights --data_format=NHWC
  4. train

    nohup python train.py &
  5. test
    Download weight file stronger-yolo-v2-test.ckpt
    If you want to get a higher mAP, you can set the score threshold to 0.01、use multi scale test、flip test.
    If you want to use it in actual projects, or if you want speed, you can set the score threshold to 0.2.

    nohup python test.py --gpu=0 --test_weight=model_path.ckpt -t07 &

Reference:

paper:

Requirements

software

  • Python3
  • Numpy1.14.5
  • Tensorflow.1.12.0
  • Opencv3.4.1

hardware

  • 16G 1080Ti

About

yolov3的Tensorflow实现--基于Python3

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 75.3%
  • Jupyter Notebook 24.7%