Skip to content
forked from Echoxvf/resl

This is the implementation codes for paper “Reliability exploration with self-ensemble learning for domain adaptive person re-identification”

Notifications You must be signed in to change notification settings

zongyi1999/resl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reliability exploration with self-ensemble learning for domain adaptive person re-identification

This is the implementation codes for Reliability exploration with self-ensemble learning for domain adaptive person re-identification

Requirement

  • numpy
  • torch==1.8.1
  • torchvision
  • six
  • h5py
  • Pillow
  • scipy
  • scikit-learn
  • metric-learn
  • metric-learn
  • faiss_gpu==1.6.3
  • dropblock==0.3.0
  • pyyaml
  • yacs
  • termcolor
  • tabulate
  • gdown

datasers

you should prepare dataset like ECN /JVTC and unzip each dataset and corresponding CamStyle under 'ECN/data/' as following:

.
+-- examples/data
|   +-- Market-1501-v15.09.15
|           +-- bounding_box_train
|           +-- query
|           +-- bounding_box_test
|           +-- bounding_box_train_camstyle
|   +-- DukeMTMC-reID
|           +-- bounding_box_train
|           +-- query
|           +-- bounding_box_test
|           +-- bounding_box_train_camstyle
|   +-- MSMT17_V1
|           +-- bounding_box_train
|           +-- bounding_box_test
|           +-- bounding_box_train_camstyle
|           +-- query
+ -- other files in this repo

You can download the dataset from: https://pan.baidu.com/s/1vwApZ0St6KBWMapMGq5ALw 提取码:o3mk

train

We run our models on one NVIDIA 3090 GPUs.

1.Pretrained on source domain. Using the fast-reid to train ReSL model on the source domain dataset

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke_supervised.yml 

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market_supervised.yml 

2.Training on target dataset

CUDA_VISIBLE_DEVICES=0  python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market.yml MODEL.WEIGHTS /path/to/checkpoint_file

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke.yml  MODEL.WEIGHTS /path/to/checkpoint_file

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_msmt17.yml  MODEL.WEIGHTS /path/to/checkpoint_file

Fully unsupervised training.

CUDA_VISIBLE_DEVICES=0  python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market.yml

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke.yml 

CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_msmt17.yml

About

This is the implementation codes for paper “Reliability exploration with self-ensemble learning for domain adaptive person re-identification”

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.5%
  • Cython 1.4%
  • Other 0.1%