This is the implementation codes for Reliability exploration with self-ensemble learning for domain adaptive person re-identification
- numpy
- torch==1.8.1
- torchvision
- six
- h5py
- Pillow
- scipy
- scikit-learn
- metric-learn
- metric-learn
- faiss_gpu==1.6.3
- dropblock==0.3.0
- pyyaml
- yacs
- termcolor
- tabulate
- gdown
you should prepare dataset like ECN /JVTC and unzip each dataset and corresponding CamStyle under 'ECN/data/' as following:
. +-- examples/data | +-- Market-1501-v15.09.15 | +-- bounding_box_train | +-- query | +-- bounding_box_test | +-- bounding_box_train_camstyle | +-- DukeMTMC-reID | +-- bounding_box_train | +-- query | +-- bounding_box_test | +-- bounding_box_train_camstyle | +-- MSMT17_V1 | +-- bounding_box_train | +-- bounding_box_test | +-- bounding_box_train_camstyle | +-- query + -- other files in this repo
You can download the dataset from: https://pan.baidu.com/s/1vwApZ0St6KBWMapMGq5ALw 提取码:o3mk
We run our models on one NVIDIA 3090 GPUs.
1.Pretrained on source domain. Using the fast-reid to train ReSL model on the source domain dataset
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke_supervised.yml
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market_supervised.yml
2.Training on target dataset
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market.yml MODEL.WEIGHTS /path/to/checkpoint_file
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke.yml MODEL.WEIGHTS /path/to/checkpoint_file
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_msmt17.yml MODEL.WEIGHTS /path/to/checkpoint_file
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_market.yml
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_duke.yml
CUDA_VISIBLE_DEVICES=0 python tools/train_net_unsupervised.py --config-file configs/Unsupervised/sbs_R50_resl_msmt17.yml