Cálculo estocástico
Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (Agosto de 2021) |
Cálculo estocástico é um ramo da matemática que opera sobre processo estocásticos. Permite uma teoria coerente de integração a ser definida para integrais de processos estocásticos em relação a processos estocásticos. É usado para modelar sistemas que comportam-se aleatoriamente, mas com uma lei de probabilidade.
O processo estocástico mais conhecido ao qual é aplicado cálculo estocástico é o processo de Wiener (nomeado em homenagem a Norbert Wiener). Tal qual descrito por Louis Bachelier em 1900 e por Albert Einstein em 1905, o processo é utilizado para a modelagem de movimento browniano outros processos de difusão de partículas sujeitas a forças aleatórias. Desde os anos 70, os processos de Wiener vêm sendo amplamente aplicados em matemática financeira e economia para modelagem, por exemplo, de valores de ações na bolsa de valores.
O cálculo estocástico tem duas bases fundamentais: o cálculo de Itō e o cálculo de variações de Malliavin. Por razões técnicas, a integral de Itō é a ferramenta mais poderosa para os processos estocásticos no geral, porém a integral de Stratonovich é frequentemente usada na formulação dos problemas (em particular na área de engenharia). A integral de Stratonovich pode ser expressa em função da integral de Itō. A principal vantagem da integral de Stratonovich é que ela obedece a regra da cadeia usual e portanto não depende do lema de Itō. Isso permite que problemas sejam expressos numa forma invariante a sistema de coordenadas, o que é extremamente desejável quando se estuda cálculo estocástico em variedades que não estão no Rn. O teorema da convergência dominada não se aplica à integral de Stratonovich, e portanto é muito difícil demonstrar resultados sem que a mesma seja re-expressa na forma de Itō.
Aplicações
[editar | editar código-fonte]Uma aplicação muito importante de cálculo estocástico é em finança quantitativa, em qual os preços de ativos são frequentemente assumidos como seguindo movimento Browniano geométrico, formalizado em equações estocástica seguindo o modelo de Black-Scholes.
Referências
[editar | editar código-fonte]- Fima C Klebaner, 2012, Introduction to Stochastic Calculus with Application (3rd Edition). World Scientific Publishing, ISBN 9781848168312
- Szabados, T. S.; Székely, B. Z. (2008). «Stochastic Integration Based on Simple, Symmetric Random Walks». Journal of Theoretical Probability. 22. 203 páginas. arXiv:0712.3908. doi:10.1007/s10959-007-0140-8 Preprint