Теорема Ферма — Эйлера

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Jumpow (обсуждение | вклад) в 18:18, 22 февраля 2015. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Теорема Ферма-Эйлера или теорема о представлении простых чисел в виде суммы двух квадратов гласит[1]:

Нечётное простое число представимо в виде суммы двух квадратов (целых чисел) тогда и только тогда, когда оно имеет вид . Иначе говоря: Шаблон:/рамка

В иностранной литературе это утверждение часто называют рождественской теоремой Ферма, так как она стала известна из письма Пьера Ферма, посланного 25 декабря 1640 года.

Примеры:

Из этого утверждения при помощи тождества Брахмагупты выводится общее утверждение:

Натуральное число представимо в виде суммы двух квадратов (целых чисел) тогда и только тогда, когда любое простое число вида входит в его разложение на простые множители в чётной степени. Шаблон:/рамка

Иногда именно этот факт подразумевается под теоремой Ферма — Эйлера.

История

Впервые это утверждение обнаружено у Альбера Жирара в 1632 году. Пьер Ферма объявил в своём письме к Мерсенну (1640), что он доказал данную теорему, однако доказательство не привёл. Через 20 лет в письме к Каркави (от августа 1659 года) Ферма намекает, что доказательство основывается на методе бесконечного спуска.

Первое опубликованное доказательство методом бесконечного спуска было найдено Леонардом Эйлером между 1742 и 1747 годами. Позднее доказательства, основанные на иных идеях, дали Жозеф Лагранж, Карл Гаусс, Герман Минковский, Якобшталь и Дон Цагир. Последним приведено доказательство, состоящее из одного предложения.[2]

Доказательство

Одно из самых коротких доказательств придумано немецким математиком Доном Цагиром[3].

Литература

  • Бухштаб А. А. Теория чисел. М.: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР, 1960.- 375 с.
  • Сендеров В., Спивак А. Суммы квадратов и целые гауссовы числа. Квант, № 3 (1999), стр. 14-22.

Примечания

Шаблон:Link FA