Open Source Java Deep Learning Frameworks for Windows

Java Deep Learning Frameworks for Windows

View 26 business solutions

Browse free open source Java Deep Learning Frameworks for Windows and projects below. Use the toggles on the left to filter open source Java Deep Learning Frameworks for Windows by OS, license, language, programming language, and project status.

  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • Centralized Workload Automation and Job Scheduling Icon
    Centralized Workload Automation and Job Scheduling

    Orchestrate your entire tech stack with our no-code connectors and low-code REST API adapter

    Orchestrates any process from a single point of control. Build reliable, low-code workflows in half the time. Develop end-to-end business and IT processes faster with hundreds of drag-and-drop actions. Coordinate enterprise-wide MFT processes using dozens of prebuilt actions for common file operations.
    Learn More
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 3,560 This Week
    Last Update:
    See Project
  • 2
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 3
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The extraction here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Deep Java Library (DJL)

    Deep Java Library (DJL)

    An engine-agnostic deep learning framework in Java

    Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for Java developers. DJL provides native Java development experience and functions like any other regular Java library. You don't have to be a machine learning/deep learning expert to get started. You can use your existing Java expertise as an on-ramp to learn and use machine learning and deep learning. You can use your favorite IDE to build, train, and deploy your models. DJL makes it easy to integrate these models with your Java applications. Because DJL is deep learning engine agnostic, you don't have to make a choice between engines when creating your projects. You can switch engines at any point. To ensure the best performance, DJL also provides automatic CPU/GPU choice based on hardware configuration.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Secure Online Fax and Business Text Messaging Service Icon
    Secure Online Fax and Business Text Messaging Service

    Elevate your business communications with secure SMS and fax solutions.

    Send and receive SMS and fax online, from email, app or with our developer friendly SMS & fax API. HIPAA compliant & ISO 27001 certified. Outstanding value and 5-star service.
    Learn More
  • 5
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    Seldon Server is a machine learning platform and recommendation engine built on Kubernetes. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Core focuses purely on deploying a wide range of ML models on Kubernetes, allowing complex runtime serving graphs to be managed in production. Seldon Core is a progression of the goals of the Seldon-Server project but also a more restricted focus to solving the final step in a machine learning project which is serving models in production. Seldon Server is a machine learning platform that helps your data science team deploy models into production. It provides an open-source data science stack that runs within a Kubernetes Cluster. You can use Seldon to deploy machine learning and deep learning models into production on-premise or in the cloud (e.g. GCP, AWS, Azure).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next