Browse free open source Graphics software and projects below. Use the toggles on the left to filter open source Graphics software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Network Management Software and Tools for Businesses and Organizations | Auvik Networks Icon
    Network Management Software and Tools for Businesses and Organizations | Auvik Networks

    Mapping, inventory, config backup, and more.

    Reduce IT headaches and save time with a proven solution for automated network discovery, documentation, and performance monitoring. Choose Auvik because you'll see value in minutes, and stay with us to improve your IT for years to come.
    Learn More
  • 1
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Surface Defect Detection Dataset Papers

    Surface Defect Detection Dataset Papers

    Constantly summarizing open source dataset and critical papers

    At present, surface defect equipment based on machine vision has widely replaced artificial visual inspection in various industrial fields, including 3C, automobiles, home appliances, machinery manufacturing, semiconductors and electronics, chemical, pharmaceutical, aerospace, light industry and other industries. Traditional surface defect detection methods based on machine vision often use conventional image processing algorithms or artificially designed features plus classifiers. Generally speaking, imaging schemes are usually designed by using the different properties of the inspected surface or defects. A reasonable imaging scheme helps to obtain images with uniform illumination and clearly reflect the surface defects of the object. In recent years, many defect detection methods based on deep learning have also been widely used in various industrial scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information. After preprocessing the model, TensorSpace supports the visualization of pre-trained models from TensorFlow, Keras and TensorFlow.js. TensorSpace is a neural network 3D visualization framework designed for not only showing the basic model structure but also presenting the processes of internal feature abstractions, intermediate data manipulations and final inference generations. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 5
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please give it a star and consider sponsoring it. You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next