Open Source Java Machine Learning Software for Mac

Java Machine Learning Software for Mac

View 58 business solutions

Browse free open source Java Machine Learning Software for Mac and projects below. Use the toggles on the left to filter open source Java Machine Learning Software for Mac by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    Weka

    Weka

    Machine learning software to solve data mining problems

    Weka is a collection of machine learning algorithms for solving real-world data mining problems. It is written in Java and runs on almost any platform. The algorithms can either be applied directly to a dataset or called from your own Java code.
    Leader badge
    Downloads: 6,434 This Week
    Last Update:
    See Project
  • 2
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 3
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 58 This Week
    Last Update:
    See Project
  • 4
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The extraction here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 6 This Week
    Last Update:
    See Project
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 5
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM languages. Data scientists and developers can speak the same language now! Smile provides hundreds advanced algorithms with clean interface. Scala API also offers high-level operators that make it easy to build machine learning apps. And you can use it interactively from the shell, embedded in Scala. The most complete machine learning engine. Smile covers every aspect of machine learning.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Clustering Variation looks for a good subset of attributes in order to improve the classification accuracy of supervised learning techniques in classification problems with a huge number of attributes involved. It first creates a ranking of attributes based on the Variation value, then divide into two groups, last using Verification method to select the best group.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 7
    This project contains weka packages of neural networks algorithms implementations like Learning Vector Quantizer (LVQ) and Self-organizing Maps (SOM). For more information about weka, please visit http://www.cs.waikato.ac.nz/~ml/weka/
    Leader badge
    Downloads: 33 This Week
    Last Update:
    See Project
  • 8
    MEKA

    MEKA

    A Multi-label Extension to Weka

    Multi-label classifiers and evaluation procedures using the Weka machine learning framework.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 9
    MODLEM

    MODLEM

    rule-based, WEKA compatible, Machine Learning algorithm

    This project is a WEKA (Waikato Environment for Knowledge Analysis) compatible implementation of MODLEM - a Machine Learning algorithm which induces minimum set of rules. These rules can be adopted as a classifier (in terms of ML). It is a sequential covering algorithm, which was invented to cope with numeric data without discretization. Actually the nominal and numeric attributes are treated in the same way: attribute's space is being searched to find the best rule condition during rule induction. In result numeric attribute's conditions are more precise and closely describe the class. This algorithm contains some aspects of Rough Set Theory: the class definition can be described accordingly to its lower or upper approximation. For more information, see: Stefanowski, Jerzy. The rough set based rule induction technique for classification problems. In: Proc. 6th European Congress on Intelligent Techniques and Soft Computing, vol. 1. Aachen, 1998. s. 109-113.
    Leader badge
    Downloads: 14 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Leader badge
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    BagaturChess

    BagaturChess

    Java Chess Engine

    This is UCI Chess Engine writen in Java. Since version 1.4 (inclusive) the project was moved to https://github.com/bagaturchess/Bagatur
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    Neuroph OCR - Handwriting Recognition
    Neuroph OCR - Handwriting Recognition is developed to recognize hand written letter and characters. It's engine derived's from the Java Neural Network Framework - Neuroph and as such it can be used as a standalone project or a Neuroph plug in.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying heuristic error error checkers, mining metadata and analyzing metadata.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    GUAJE FUZZY

    GUAJE FUZZY

    Free software for generating understandable and accurate fuzzy systems

    GUAJE stands for Generating Understandable and Accurate fuzzy models in a Java Environment. Thus, it is a free software tool (licensed under GPL-v3) with the aim of supporting the design of interpretable and accurate fuzzy systems by means of combining several preexisting open source tools, taking profit from the main advantages of all of them. It is a user-friendly portable tool designed and developed in order to make easier knowledge extraction and representation for fuzzy systems, paying special attention to interpretability issues. GUAJE lets the user define expert variables and rules, but also provide supervised and fully automatic learning capabilities. Both types of knowledge, expert and induced, are integrated under the expert supervision, ensuring interpretability, simplicity and consistency of the knowledge base along the whole process. Notice that, GUAJE is is an upgraded version of the free software called KBCT (Knowledge Base Configuration Tool).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Ceka

    Ceka

    Crowd Environment and its Knowledge Analysis

    A knowledge analysis tool for crowdsourcing based on Weka. We also have a Python version of Crowdsourcing Learning: CrowdwiseKit on GitHub (https://github.com/tssai-lab/CrowdwiseKit).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Program to performing the complete cycle of neural networks analysis: preparing data, choosing neural network (CasCor, MP, LogRegression, PNN), learning of network, monitoring learning state, ROC-analysis, optimization of network parameters using GA.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    This is a RapidMiner extension replacing the current Weka-Plugin with the updated 3.7.3 Weka-Version. This is basically a branch of the 3.7.3 Version of WEKA wrapped into the old extension. New Features Include: -All the Features of the 3.7.3 Weka Package -Multi-Threaded ensemble learning -An enhancement on the popular RandomForest Learner based on "Dynamic Integration with Random Forests" by Tsymbal et al. 2006 and "Improving Random Forests" by Robnik-Sikonja 2004. -More enhancements to the voting mechanisms in Random Forest -Possibility to output Feature Weights according to the original Breiman Paper 2001
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    A.I. Stock Trends With WEKA & TA-Lib

    A.I. Stock Trends With WEKA & TA-Lib

    A Repository Of The Java Programs Presented in the Videos.

    This is the open/public source code repository for the Java programs shown in the YouTube videos - A.I. Stock Trends With WEKA, TA-Lib and more https://www.youtube.com/channel/UCPxmgFZDS7F06UBBxH5b4mg
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    A2y

    Automated Algorithm Synthesis

    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    ABC-DynF

    Adaptive Bayesian Classifier with Dynamic Features

    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators. Operators include machine learning (WEKA, MOA, MEKA) and image processing (ImageJ, JAI, BoofCV, LIRE and Gnuplot). R available using Rserve. WEKA webservice allows other frameworks to use WEKA models. Fast prototyping with Groovy and Jython. Read/write support for various databases and spreadsheet applications.
    Leader badge
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    ANNFiD

    A forensic file identification tool using neural networks

    Just carved a bunch of bytes and have no idea what they could be? Maybe ANNFiD can help. ANNFiD uses neural network to identify byte patterns. It can be trained and has a GUI to help in the process. The tool is still on a very early stage, but could improve exponentially with the help of the developer community
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ART - Artificial Reasoning Toolkit
    Java library devoted to handle Genetic Algorithms and Classifier Systems. It has been engineered to be used into agent based simulation models and to search bounded optimal solutions in wide solution spaces. It runs on distributed clusters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    AdPreqFr4SL

    Adaptive Prequential Learning Framework

    The AdPreqFr4SL learning framework for Bayesian Network Classifiers is designed to handle the cost / performance trade-off and cope with concept drift. Our strategy for incorporating new data is based on bias management and gradual adaptation. Starting with the simple Naive Bayes, we scale up the complexity by gradually updating attributes and structure. Since updating the structure is a costly task, we use new data to primarily adapt the parameters and only if this is really necessary, do we adapt the structure. The method for handling concept drift is based on the Shewhart P-Chart. Project homepage: http://adpreqfr4sl.sourceforge.net
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial. It supports model training, evaluation, and deployment in real-time environments and integrates seamlessly into Alibaba’s cloud ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next