Compare the Top Data Engineering Tools for Cloud as of February 2026

What are Data Engineering Tools for Cloud?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Cloud currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is an essential tool for data engineers, allowing them to streamline the process of data ingestion, transformation, and analysis. With its scalable infrastructure and robust suite of data engineering features, users can efficiently build data pipelines and automate workflows. BigQuery integrates easily with other Google Cloud tools, making it a versatile solution for data engineering tasks. New customers can take advantage of $300 in free credits to explore BigQuery’s features, enabling them to build and refine their data workflows for maximum efficiency and effectiveness. This allows engineers to focus more on innovation and less on managing the underlying infrastructure.
    Starting Price: Free ($300 in free credits)
    View Tool
    Visit Website
  • 2
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Tool
    Visit Website
  • 3
    Looker

    Looker

    Google

    Looker, Google Cloud’s business intelligence platform, enables you to chat with your data. Organizations turn to Looker for self-service and governed BI, to build custom applications with trusted metrics, or to bring Looker modeling to their existing environment. The result is improved data engineering efficiency and true business transformation. Looker is reinventing business intelligence for the modern company. Looker works the way the web does: browser-based, its unique modeling language lets any employee leverage the work of your best data analysts. Operating 100% in-database, Looker capitalizes on the newest, fastest analytic databases—to get real results, in real time.
  • 4
    Microsoft Fabric
    Reshape how everyone accesses, manages, and acts on data and insights by connecting every data source and analytics service together—on a single, AI-powered platform. All your data. All your teams. All in one place. Establish an open and lake-centric hub that helps data engineers connect and curate data from different sources—eliminating sprawl and creating custom views for everyone. Accelerate analysis by developing AI models on a single foundation without data movement—reducing the time data scientists need to deliver value. Innovate faster by helping every person in your organization act on insights from within Microsoft 365 apps, such as Microsoft Excel and Microsoft Teams. Responsibly connect people and data using an open and scalable solution that gives data stewards additional control with built-in security, governance, and compliance.
    Starting Price: $156.334/month/2CU
  • 5
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 6
    Ardent

    Ardent

    Ardent

    Ardent (at tryardent.com) is an AI data engineer platform that builds, maintains, and scales data pipelines with minimal human effort. It lets users issue natural language commands, and the system handles implementation, schema inference, lineage tracking, and error resolution autonomously. Ardent’s ingestors come preconfigured for many common data sources and work “out of the box,” enabling connection to warehouses, orchestration systems, and databases in under 30 minutes. It supports debugging on autopilot by referencing web and documentation knowledge, and is trained on thousands of real engineering tasks to solve complex pipeline issues with zero intervention. It is engineered to handle production contexts, managing numerous tables and pipelines at scale, running parallel jobs, triggering self-healing workflows, monitoring and enforcing data quality, and orchestrating operations through APIs or UI.
    Starting Price: Free
  • 7
    IBM Cognos Analytics
    IBM Cognos Analytics acts as your trusted co-pilot for business with the aim of making you smarter, faster, and more confident in your data-driven decisions. IBM Cognos Analytics gives every user — whether data scientist, business analyst or non-IT specialist — more power to perform relevant analysis in a way that ties back to organizational objectives. It shortens each user’s journey from simple to sophisticated analytics, allowing them to harness data to explore the unknown, identify new relationships, get a deeper understanding of outcomes and challenge the status quo. Visualize, analyze and share actionable insights about your data with anyone in your organization with IBM Cognos Analytics.
  • 8
    Numbers Station

    Numbers Station

    Numbers Station

    Accelerating insights, eliminating barriers for data analysts. Intelligent data stack automation, get insights from your data 10x faster with AI. Pioneered at the Stanford AI lab and now available to your enterprise, intelligence for the modern data stack has arrived. Use natural language to get value from your messy, complex, and siloed data in minutes. Tell your data your desired output, and immediately generate code for execution. Customizable automation of complex data tasks that are specific to your organization and not captured by templated solutions. Empower anyone to securely automate data-intensive workflows on the modern data stack, free data engineers from an endless backlog of requests. Arrive at insights in minutes, not months. Uniquely designed for you, tuned for your organization’s needs. Integrated with upstream and downstream tools, Snowflake, Databricks, Redshift, BigQuery, and more coming, built on dbt.
  • 9
    Ask On Data

    Ask On Data

    Helical Insight

    Ask On Data is a chat based AI powered open source Data Engineering/ ETL tool. With agentic capabilities and pioneering next gen data stack, Ask On Data can help in creating data pipelines via a very simple chat interface. It can be used for tasks like Data Migration, Data Loading, Data Transformations, Data Wrangling, Data Cleaning as well as Data Analysis as well with a simple chat interface. This tool can be used by Data Scientists to get clean data. Data Analyst and BI engineers to create calculated tables. Data Engineers can also use this tool to increase their efficiency and achieve much more.
  • 10
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 11
    Xtract Data Automation Suite (XDAS)
    Xtract Data Automation Suite (XDAS) is a comprehensive platform designed to streamline process automation for data-intensive workflows. It offers a vast library of over 300 pre-built micro solutions and AI agents, enabling businesses to design and orchestrate AI-driven workflows with no code environment, thereby enhancing operational efficiency and accelerating digital transformation. Key components of XDAS include Bot Studio, which allows users to create custom bots and scripts; Scrape Studio, for effortless web data extraction; GenAI Studio, for developing AI agents that process unstructured data; HITL Studio, which integrates human oversight into data workflows; and XRAG Studio, for building advanced AI systems using retrieval-augmented generation techniques. By leveraging these tools, XDAS helps businesses ensure compliance, reduce time to market, enhance data accuracy, and forecast market trends across various industries.
  • Previous
  • You're on page 1
  • Next