ParlayLib is a C++ library for developing efficient parallel algorithms and software on shared-memory multicore machines. It provides additional tools and primitives that go beyond what is available in the C++ standard library, and simplifies the task of programming provably efficient and scalable parallel algorithms. It consists of a sequence data type (analogous to std::vector), many parallel routines and algorithms, a work-stealing scheduler to support nested parallelism, and a scalable memory allocator. It has been developed over a period of seven years and used in a variety of software including the PBBS benchmark suite, the Ligra, Julienne, and Aspen graph processing frameworks, the Graph Based Benchmark Suite, and the PAM library for parallel balanced binary search trees, and an implementation of the TPC-H benchmark suite.
This documentation is a work in progress and is not yet fully complete.
Contents
- Getting started
- Using Parlay with Cilk, OpenMP, or TBB
- Features
ParlayLib is a lightweight header-only library, so it is easy to integrate into your new or existing projects. There are many ways to acomplish this.
Parlay comes configured to work with CMake, so if CMake is your preferred choice of build system, integrating Parlay is straightforward. To install Parlay, create a build directory (any name is fine) in the Parlay root directory, and from that build directory, configure cmake by running cmake ..
. If you wish to change the installation location (the default is usually /usr/local/) then you can add the option -DCMAKE_INSTALL_PREFIX:PATH=/your/installation/path
. After configuring, run cmake --build . --target install
(or just make install
for short if you happen to be using Make as the underlying build tool), possibly with sudo
if necessary, to install Parlay.
Now that Parlay is installed, you can locate and include it via CMake by adding the following to the CMakeLists.txt of your project
find_package(Threads REQUIRED)
find_package(Parlay CONFIG REQUIRED)
You can then link Parlay to any of your targets by writing
target_link_libraries(my_target PRIVATE Parlay::parlay)
You are now ready to go!
If you use a different build system, you have the option of installing Parlay via CMake (see above), or installing it manually, and then including it manually or via your preferred build system. If you install Parlay to a location that is not in your compiler's include path, you should tell your compiler where to find it by adding an include flag like so.
-I/path/to/parlay/include/location
To ensure that Parlay functions correctly once included, make sure that you are compiling with C++17 enabled (add -std=c++17
or later to your compile command, or the equivalent in your favourite build system). Some features of Parlay require a 16-byte CAS. This can be enabled by adding the definition -DMCX16
to your compile command, and passing the flag -mcx16
to supporting compilers. Lastly, you'll need threading support, which is usually achieved via one of the flags -pthread
, -pthreads
, or your operation system's equivalent.
If fancy build systems are not your thing, the tried and true way to include Parlay in your project is to simply copy the source code of Parlay directly into your own project. Since the library is header only, this should work out of the box, assuming you add any required flags (see above). One possible way to do this while still enabling updates to ParlayLib is to include it as a Git submodule of your project's Git repository.
If you're already using Cilk, OpenMP, or Thread Building Blocks, and just want to use Parlay's algorithms without its parallel scheduler, that is easy to do. When building your program, simply add the appropriate compile definition as below.
-DPARLAY_CILK
-DPARLAY_OPENMP
-DPARLAY_TBB
Parlay will then use the specified framework's parallel operations to support its algorithms instead of its own scheduler.
Parlay includes a number of pieces that can be used together or individually. At a high level, we have
- A library of useful parallel primitives
- Parallel data structures
- A parallel scheduler
- A scalable memory allocator
Many of Parlays primitive are designed around the range concept. Essentially, a range in Parlay is any type that supports std::begin(r)
and std::end(r)
, such that std::begin(r)
returns a random access iterator, and std::end(r) - std::begin(r)
denotes the size of the range. In other words, it is any type that can be used as a finite-length random access sequence. This is satisfied by std::vector
, and by Parlays own parlay::sequence
, and many other types.
If compiled with a recent compiler that supports C++ concepts, Parlay will check that ranges used in its primitives satisfy these requirements at compile time.
Parlay offers an interface for fork-join parallelism in the form of a fork operation, and a parallel for loop.
Binary forking
The primitive par_do
takes two function objects and evaluates them in parallel. For exampe, we can write a recursive sum function like so, where the left and right halves are evaluated in parallel.
template<typename Iterator>
int sum(Iterator first, Iterator last) {
if (first == last - 1) {
return *first;
}
else {
auto mid = first + std::distance(first, last) / 2;
int left_sum, right_sum;
parlay::par_do(
[&]() { left_sum = sum(first, mid); },
[&]() { right_sum = sum(mid, last); }
)
return left_sum + right_sum;
}
}
Parallel for loops
A parallel for loop takes a start and end value, and a function object, and evaluates the function object at every value in [start, end).
parlay::sequence<int> a(100000);
parlay::parallel_for(0, 100000, [&](size_t i) {
a[i] = i;
});
template <
typename T,
typename Allocator = parlay::allocator<T>
> class sequence
A sequence is a parallel version of std::vector
. It supports the same operations, but performs all initialization, updates, and destruction in parallel. Sequences satisfiy the range concept.
- T is the type of the elements of the sequence
- Allocator is the allocator used to allocate/deallocate memory for the sequence. The
value_type
of the allocator must beT
. By default,parlay::allocator<T>
is used. To switch the default tostd::allocator<T>
, add the compile definitionPARLAY_USE_STD_ALLOC
sequence()
sequence(const sequence<T, Allocator>& s)
sequence(sequence<T, Allocator>&& rv) noexcept
Constructs an empty sequence, a copy of the given sequence, or moves the given sequence respectively.
sequence(size_t n)
sequence(size_t n, const value_type& t)
Constructs a sequence consisting of n
default constructed elements of type T
, or of n
copies of the value t
.
template<typename _Iterator> sequence(_Iterator i, _Iterator j)
sequence(std::initializer_list<value_type> l)
Constructs a sequence consisting of copies of the elements of the iterator range (i, j]
, or copies of the elements of the initializer list l
.
Type | Definition |
---|---|
value_type |
Same as T |
reference |
T& |
const_reference |
const T& |
difference_type |
std::ptrdiff_t |
size_type |
size_t |
pointer |
T* |
const_pointer |
const T* |
iterator |
T* (Satisfies random access iterator) |
const_iterator |
Equivalent to const iterator |
reverse_iterator |
std::reverse_iterator<iterator> |
const_reverse_iterator |
Equivalent to std::reverse_iterator<const_iterator> |
view_type |
slice<iterator, iterator> |
const_view_type |
slice<const_iterator, const_iterator> |
Iterators
Function | Description |
---|---|
iterator begin() |
Iterator to the beginning of the sequence |
iterator end() |
Iterator to the end of the sequence |
const_iterator cbegin() |
Constant iterator to the beginning of the sequence |
const_iterator cend() |
Constant iterator to the end of the sequence |
reverse_iterator rbegin() |
Reverse iterator to the end of the sequence |
reverse_iterator rend() |
Reverse iterator to the beginning of the sequence |
const_reverse_iterator crbegin() |
Constant reverse iterator to the end of the sequence |
const_reverse_iterator crend() |
Constant reverse iterator to the beginning of the sequence |
The functions for each iterator type also have corresponding const overloads.
Size
Function | Description |
---|---|
size_type size() |
Returns the length of the sequence |
size_type max_size() |
Returns the maximum possible length of a sequence |
bool empty() |
Returns true if the sequence is empty |
Element access
Function | Description |
---|---|
value_type* data() |
Returns a pointer to the underlying raw data buffer |
value_type& operator[](size_type i) |
Returns a reference to the element at position i |
value_type& at(size_type i) |
Same as operator[] , but throws an exception if i is out of range |
value_type& front() |
Returns a reference to the first element of the sequence |
value_type& back() |
Returns a reference to the last element of the sequence |
Each of these also has a corresponding const overload.
Bulk element access
Function | Description |
---|---|
view_type head(iterator p) |
Returns a slice corresponding to all elements of the sequence before p |
view_type head(size_type len) |
Returns a slice corresponding to the first len elements of the sequence |
view_type tail(iterator p) |
Returns a slice corresponding to all elements from the element pointed to by p onwards |
view_type tail(size_type len) |
Returns a slice corresponding to the final len elements of the sequence |
view_type subseq(size_type begin, size_type end) |
Returns a slice corresponding to the elements at between indices begin and end |
Each of these also has a corresponding const overload.
Insertion
Function | Description |
---|---|
template<typename... Args> iterator emplace(iterator p, Args&&... args) |
Constructs an element of type T from the given arguments and inserts it at the position in the sequence pointed to by p |
template<typename... Args> iterator emplace_back(Args&&... args) |
Constructs an element of type T from the given arguments and appends it to the end of the sequence |
iterator push_back(const value_type& v) |
Appends a copy of the value v to the end of the sequence |
iterator push_back(value_type&& v) |
Moves the value v to append it to the end of the sequence |
iterator insert(iterator p, const value_type& v) |
Inserts a copy of the value v at the position in the sequence pointed to by p |
iterator insert(iterator p, value_type&& v) |
Moves the value v to insert it at the position in the sequence pointed to by p |
These functions all return an iterator to the newly inserted value.
Resetting
Function | Description |
---|---|
template<typename _Iterator> void assign(_Iterator i, _Iterator j) |
Clears the sequence and assigns it to contain copies of the elements in the iterator range [i, j) |
void assign(size_type n, const value_type& v) |
Clears the sequence and assigns it to contain n copies of the value v |
void assign(std::initializer_list<value_type> l) |
Clears the sequence and assigns it to contain copies of the elements in the initializer list l |
template<typename R> void assign(R&& r) |
Clears the sequence and assigns it to contain copies of the elements in the iterable range r |
void resize(size_type new_size) |
Resize the sequence to new_size . If new_size is larger than the current size, the sequence is extended with default constructed elements of type T . |
void resize(size_type new_size, const value_type& v) |
Resize the sequence to new_size . If new_size is larger than the current size, the sequence is extended with copies of the value v . |
Bulk insertion
Function | Description |
---|---|
iterator append(size_t n, const value_type& v) |
Appends n copies of the value v to the end of the sequence |
template<typename _Iterator> iterator append(_Iterator first, _Iterator last) |
Append copies of the elements contained in the iterator range [first, last) to the end of the sequence |
template<typename R> iterator append(R&& r) |
Appends copies of the elements of the range r to the end of the sequence. If the given range is an rvalue, its contents will be moved |
iterator insert(iterator p, size_t n, const value_type& v) |
Inserts n copies of the value v at the position in the sequence pointed to by p |
template<typename R> iterator insert(iterator p, R&& r) |
Inserts copies of the elements of the iterable range r at the position in the sequence pointed to by p |
template<typename _Iterator> iterator insert(iterator p, _Iterator i, _Iterator j) |
Inserts copies of the elements contained in the iterator range [first, last) at the position in the sequence pointed to by p |
iterator insert(iterator p, std::initializer_list<value_type> l) |
Insert copies of the contents of the initializer list l at the position in the sequence pointed to by p |
These functions all return an iterator to the beginning of the range of the newly inserted elements.
Deletion
Function | Description |
---|---|
iterator erase(iterator q) |
Removes the element at the position in the sequence pointed to by q . Returns a pointer to the element that is now at the position that was previously pointed to by q |
void pop_back() |
Removes the last element of the sequence |
void clear() |
Removes all elements of the sequence |
Bulk deletion
Function | Description |
---|---|
iterator erase(iterator q1, iterator q2) |
Removes all elements in the iterator range [q1, q2) and returns a pointer to the element now at the position that was previously pointed to by q1 |
sequence<value_type> pop_tail(iterator p) |
Removes all elements of the sequence from that pointed to by p onwards and returns a new sequence consisting of the removed elements |
sequence<value_type> pop_tail(size_type len) |
Removes the last len elements from the sequence and returns a new sequence consisting of the removed elements |
Miscelaneous
Function | Description |
---|---|
bool operator==(const sequence<T, Allocator>& other) |
Compare two sequences for equality |
bool operator!=(const sequence<T, Allocator>& b) |
Compare two sequences for inequality |
void swap(sequence<T, Allocator>& b) |
Swap the contents the sequence with another |
sequence<T, Allocator>& operator=(sequence<T, Allocator> b) |
Copy and move assignment |
sequence<T, Allocator>& operator=(std::initializer_list<value_type> l) |
Assignment from an initializer list |
static sequence<T> sequence<T>::uninitialized(size_t n)
Returns a sequence of size n
containing uninitialized memory. If T
is a non-trivial type, memory must be initialized before any operation that could resize, delete, or otherwise destroy any element of the sequence, or this will lead to undefined behaviour. Use with caution.
static sequence<T> sequence<T>::from_function(size_t n, F&& f)
Returns a sequence consisting of elements of type T
constructed from f(0), f(1), ..., f(n-1)
.
template<typename R>
auto to_sequence(R&& r) -> sequence<range_value_type_t<R>>
Return a sequence consisting of copies of the elements of the iterable range r
.
template<
typename T,
typename F
> class delayed_sequence;
A delayed sequence is a lazy functional sequence that generates its elements on demand, rather than storing them in memory. A delayed sequence satisfies the range concept. The easiest way to construct a delayed sequence is to use the delayed_seq
factory function.
Example
// A sequence consisting of the first 1000 odd integers
auto seq = parlay::delayed_seq<int>(1000, [](size_t i) {
return 2*i + 1;
});
- T is the type of the elements generated by the sequence
- F is the type of the function object that generates the elements of the sequence. It should be a function of type
T(size_t)
, i.e. a function that maps indices of typesize_t
to elements of typeT
.
delayed_sequence(size_t n, F _f)
delayed_sequence(size_t _first, size_t _last, F _f)
Constructs a delayed sequence that generates elements from the given function _f
. Given n
, the sequence consists of the elements f(0), ..., f(n-1)
. Otherwise, given _first
and _last
, the sequence consists of the elements f(_first), ... f(_last-1)
.
delayed_sequence(const delayed_sequence<T, F>&)
delayed_sequence(delayed_sequence<T, F>&&) noexcept
delayed_sequence<T, F>& operator=(const delayed_sequence<T, F>&)
delayed_sequence<T, F>& operator=(delayed_sequence<T, F>&&) noexcept
The copy constructor and move constructor are viable provided that the underlying function object is copyable and movable respectively.
Type | Definition |
---|---|
value_type |
Same as T |
reference |
Same as T |
const_reference |
Same as T |
iterator |
A constant random access iterator |
const_iterator |
Same as iterator |
reverse_iterator |
std::reverse_iterator<iterator> |
const_reverse_iterator |
Same as reverse_iterator |
difference_type |
std::ptrdiff_t |
size_type |
size_t |
Iterators
Function | Description |
---|---|
iterator begin() |
Iterator to the beginning of the sequence |
iterator end() |
Iterator to the end of the sequence |
const_iterator cbegin() |
Constant iterator to the beginning of the sequence |
const_iterator cend() |
Constant iterator to the end of the sequence |
reverse_iterator rbegin() |
Reverse iterator to the end of the sequence |
reverse_iterator rend() |
Reverse iterator to the beginning of the sequence |
const_reverse_iterator crbegin() |
Constant reverse iterator to the end of the sequence |
const_reverse_iterator crend() |
Constant reverse iterator to the beginning of the sequence |
Element access
Function | Description |
---|---|
T operator[](size_t i) |
Generate the i'th element of the sequence |
T front() |
Generate the first element of the sequence |
T back() |
Generate the last element of the sequence |
Size
Function | Description |
---|---|
size_type size() |
Return the length of the sequence |
bool empty() |
Return true if the sequence is empty |
Miscelaneous
Function | Description |
---|---|
void swap(delayed_sequence<T, F>& other) |
Swap this delayed sequence with another of the same type |
A phase-concurrent hashtable allows for concurrent insertions, concurrent searches, and concurrent deletions, but does not permit mixing insertions, searching, and deletion concurrently.
parlay::hashtable<hash_numeric<int>> table;
table.insert(5);
auto val = table.find(5); // Returns 5
table.deleteVal(5);
template<typename UnaryOp>
auto tabulate(size_t n, UnaryOp&& f)
tabulate takes an integer n and and a function f of integers, and produces a sequence consisting of f(0), f(1), ..., f(n-1)
template<parlay::Range R, typename UnaryOp>
auto map(R&& r, UnaryOp&& f)
template<parlay::Range R, typename UnaryOp>
auto dmap(R&& r, UnaryOp&& f)
map takes a range r
and a function f
from the value type of that range, and produces the sequence consisting of f(r[0]), f(r[1]), f(r[2]), ...
.
dmap (Delayed map) is the same as map, but the resulting sequence is a delayed sequence. Note that dmap forwards the range argument to the closure owned by the delayed sequence, so if r
is an rvalue reference, it will be moved into and owned by the delayed sequence. If it is an lvalue reference, the delayed sequence will only keep a reference to r
, so r
must remain alive as long as the delayed sequence does.
template<parlay::Range R_in, parlay::Range R_out>
void copy(const R_in& in, R_out& out)
copy takes a given range and copies its elements into another range
template<parlay::Range R>
auto reduce(const R& r)
template<parlay::Range R, typename Monoid>
auto reduce(const R& r, Monoid&& m)
reduce takes a range and returns the reduction with respect some associative binary operation (addition by default). The associative operation is specified by a monoid object which is an object that has a .identity
field, and a binary operator f
.
template<parlay::Range R>
auto scan(const R& r)
template<parlay::Range R>
auto scan_inclusive(const R& r)
template<parlay::Range R>
auto scan_inplace(R&& r)
template<parlay::Range R>
auto scan_inclusive_inplace(R&& r)
template<parlay::Range R, typename Monoid>
auto scan(const R& r, Monoid&& m)
template<parlay::Range R, typename Monoid>
auto scan_inclusive(const R& r, Monoid&& m)
template<parlay::Range R, typename Monoid>
auto scan_inplace(R&& r, Monoid&& m)
template<parlay::Range R, typename Monoid>
auto scan_inclusive_inplace(R& r, Monoid&& m)
scan computes a scan (aka prefix sum) with respect to an associative binary operation (addition by default). The associative operation is specified by a monoid object which is an object that has a .identity
field, and a binary operator f
. Scan returns a pair, consisting of the partial sums, and the total.
By default, scan considers prefix sums excluding the final element. There is also scan_inclusive, which is inclusive of the final element of each prefix. There are also inplace versions of each of these (scan_inplace, scan_inclusive_inplace), which write the sums into the input and return the total.
template<parlay::Range R, parlay::Range BoolSeq>
auto pack(const R& r, const BoolSeq& b)
template<parlay::Range R_in, parlay::Range BoolSeq, parlay::Range R_out>
auto pack_into(const R_in& in, const BoolSeq& b, R_out& out)
template<parlay::Range BoolSeq>
auto pack_index(const BoolSeq& b)
template<typename IndexType, parlay::Range BoolSeq>
auto pack_index(const BoolSeq& b)
pack takes an input a range a boolean indicator sequence, and returns a new sequence consisting of the elements of the range such that the element in the corresponding position in the indicator sequence is true.
Similarly, pack_into does the same thing but writes the answer into an existing range. pack_index takes a range of elements that are convertible to bool, and returns a sequence of indices such that the elements at those positions convert to true.
template<parlay::Range R, typename UnaryPred>
auto filter(const R& r, UnaryPred&& f)
template<parlay::Range R_in, parlay::Range R_out, typename UnaryPred>
auto filter_into(const R_in& in, R_out& out, UnaryPred&& f)
filter takes a range and a unary operator, and returns a sequence consisting of the elements of the range for which the unary operator returns true. Alternatively, filter_into does the same thing but writes the output into the given range and returns the number of elements that were kept.
template<parlay::Range R1, parlay::Range R2>
auto merge(const R1& r1, const R2& r2)
template<parlay::Range R1, parlay::Range R2, typename BinaryPred>
auto merge(const R1& r1, const R2& r2, BinaryPred pred)
merge returns a sequence consisting of the elements of r1
and r2
in sorted order, assuming
that r1
and r2
are already sorted. An optional binary predicate can be used to specify the comparison operation.
template<parlay::Range R, typename Integer_>
auto histogram(const R& A, Integer_ m)
histogram takes an integer valued range and a maximum value and returns a histogram, i.e. an array recording the number of occurrences of each element in the input range, up to the given maximum.
template<parlay::Range R>
auto sort(const R& in)
template<parlay::Range R, typename Compare>
auto sort(const R& in, Compare&& comp)
template<parlay::Range R>
auto stable_sort(const R& in)
template<parlay::Range R, typename Compare>
auto stable_sort(const R& in, Compare&& comp)
template<parlay::Range R>
void sort_inplace(R&& in)
template<parlay::Range R, typename Compare>
void sort_inplace(R&& in, Compare&& comp)
template<parlay::Range R>
void stable_sort_inplace(R&& in)
template<parlay::Range R, typename Compare>
void stable_sort_inplace(R&& in, Compare&& comp)
sort takes a given range and outputs a sorted copy (unlike the standard library, sort is not inplace by default). sort_inplace can be used to sort a given range in place. stable_sort and stable_sort_inplace are the same but guarantee that equal elements maintain their original relative order. All of these functions can optionally take a custom comparator object, which is a binary operator that evaluates to true if the first of the given elements should compare less than the second.
template<parlay::Range R>
auto integer_sort(const R& in)
template<parlay::Range R, typename Key>
auto integer_sort(const R& in, Key&& key)
template<parlay::Range R>
void integer_sort_inplace(R&& in)
template<parlay::Range R, typename Key>
void integer_sort_inplace(R&& in, Key&& key)
integer_sort works just like sort, except that it is specialized to sort integer keys, and is significantly faster than ordinary sort. It can be used to sort ranges of integers, or ranges of arbitrary types if a unary operator is provided that can produce an integer key for any given element,
template <parlay::Range R, typename UnaryFunction>
void for_each(R&& r , UnaryFunction f)
for_each applies the given unary function to every element of the given range. The range may be constant, in which case the unary function should not attempt to modify it, or it may be mutable, in which case the function is allowed to modify it.
template <parlay::Range R, class T>
size_t count(const R& r, T const &value)
template <parlay::Range R, typename UnaryPredicate>
size_t count_if(const R& r, UnaryPredicate p)
count returns the number of elements in the given range that compare equal to the given value. count_if returns the number of elements that satisfy the predicate p.
template <parlay::Range R, typename UnaryPredicate>
bool all_of(const R& r, UnaryPredicate p)
template <parlay::Range R, typename UnaryPredicate>
bool any_of(const R& r, UnaryPredicate p)
template <parlay::Range R, typename UnaryPredicate>
bool none_of(const R& r, UnaryPredicate p)
all_of, any_of, and none_of return true if the given predicate is true for all, any, or none of the elements in the given range respectively.
template <parlay::Range R, typename T>
auto find(R&& r, T const &value)
template <parlay::Range R, typename UnaryPredicate>
auto find_if(R&& r, UnaryPredicate p)
template <parlay::Range R, typename UnaryPredicate>
auto find_if_not(R&& r, UnaryPredicate p)
template <parlay::Range R1, parlay::Range R2, typename BinaryPredicate>
auto find_first_of(R1&& r1, const R2& r2, BinaryPredicate p)
find returns an iterator to the first element in the given range that compares equal to the given value, or the end iterator if no such element exists. find_if returns the first element in the given range that satisfies the given predicate, or the end iterator if no such element exists. find_if_not similarly returns the first element that does not satisfy the given predicate, or the end iterator.
find_first_of returns an iterator to the first element in the range r1
that compares equal to any of the elements in r2
, or the end iterator of r1
if no such element exists.
template <parlay::Range R>
auto adjacent_find(R&& r)
template <parlay::Range R, typename BinaryPred>
auto adjacent_find(R&& r, BinaryPred p)
adjacent_find returns an iterator to the first element in the given range that compares equal to the next element on its right, Optionally, a binary predicate can be supplied to dictate how two elements should compare equal.
template <parlay::Range R1, parlay::Range R2>
size_t mismatch(R1&& r1, R2&& r2)
template <parlay::Range R1, parlay::Range R2, typename BinaryPred>
auto mismatch(R1&& r1, R2&& r2, BinaryPred p)
mismatch returns a pair of iterators corresponding to the first occurrence in which an element of r1
is not equal to the element of r2
in the same position. If no such occurrence exists, returns a pair containing the end iterator of r1
and an iterator pointing to the corresponding position in r2
. Optionally, a binary predicate can be supplied to dictate how two elements should compare equal.
template <parlay::Range R1, parlay::Range R2>
size_t search(R1&& r1, const R2& r2)
template <parlay::Range R1, parlay::Range R2, typename BinaryPred>
auto search(R1&& r1, const R2& r2, BinaryPred pred)
search returns an iterator to the beginning of the first occurrence of the range r2
in r1
, or the end iterator of r1
if no such occurrence exists. Optionally, a binary predicate can be given to specify how two elements should compare equal.
template <parlay::Range R1, parlay::Range R2>
auto find_end(R1&& r1, const R2& r2)
template <parlay::Range R1, parlay::Range R2, typename BinaryPred>
auto find_end(R1&& r1, const R2& r2, BinaryPred p)
find_end returns an iterator to the beginning of the last occurrence of the range r2
in r1
, or the end iterator of r1
if no such occurrence exists. Optionally, a binary predicate can be given to specify how two elements should compare equal.
template <parlay::Range R1, parlay::Range R2>
bool equal(const R1& r1, const R2& r2)
template <parlay::Range R1, parlay::Range R2, class BinaryPred>
bool equal(const R1& r1, const R2& r2, BinaryPred p)
equal returns true if the given ranges are equal, that is, they have the same size and all elements at corresponding positions compare equal. Optionally, a binary predicate can be given to specify how two elements should compare equal.
template <parlay::Range R1, parlay::Range R2, class Compare>
bool lexicographical_compare(const R1& r1, const R2& r2, Compare less)
lexicographical_compare returns true if the first range compares lexicographically less than the second range. A range is considered lexicographically less than another if it is a prefix of the other or the first mismatched element compares less than the corresponding element in the other range.
template<parlay::Range R>
auto unique(const R& r)
template <parlay::Range R, typename BinaryPredicate>
auto unique(const R& r, BinaryPredicate eq)
unique returns a sequence consisting of the elements of the given range that do not compare equal to the element preceding them. All elements in the output sequence maintain their original relative order. An optional binary predicate can be given to specify how two elements should compare equal.
template <parlay::Range R>
auto min_element(R&& r)
template <parlay::Range R, typename Compare>
auto min_element(R&& r, Compare comp)
template <parlay::Range R>
auto max_element(R&& r)
template <parlay::Range R, typename Compare>
auto max_element(R&& r, Compare comp)
template <parlay::Range R>
auto minmax_element(R&& r)
template <parlay::Range R, typename Compare>
auto minmax_element(R&& r, Compare comp)
min_element and max_element return a pointer to the minimum or maximum element in the given range respectively. In the case of duplicates, the leftmost element is always selected. minmax_element returns a pair consisting of iterators to both the minimum and maximum element. An optional binary predicate can be supplied to dictate how two elements should compare.
template <parlay::Range R>
auto reverse(const R& r)
template <parlay::Range R>
auto reverse_inplace(R&& r)
reverse returns a new sequence consisting of the elements of the given range in reverse order. reverse_inplace reverses the elements of the given range.
template <parlay::Range R>
auto rotate(const R& r, size_t t)
rotate returns a new sequence consisting of the elements of the given range cyclically shifted left by t
positions.
template <parlay::Range R>
bool is_sorted(const R& r)
template <parlay::Range R, typename Compare>
bool is_sorted(const R& r, Compare comp)
template <parlay::Range R>
auto is_sorted_until(const R& r)
template <parlay::Range R, typename Compare>
auto is_sorted_until(const R& r, Compare comp)
is_sorted returns true if the given range is sorted. is_sorted_until returns an iterator to the first element of the range that is out of order, or the end iterator if the range is sorted. An optional binary predicate can be supplied to dictate how two elements should compare.
template <parlay::Range R, typename UnaryPred>
bool is_partitioned(const R& r, UnaryPred f)
is_partitioned returns true if the given range is partitioned with respect to the given unary predicate. A range is partitioned with respect to the given predicate if all elements for which the predicate returns true precede all of those for which it returns false.
template<parlay::Range R, typename T>
auto remove(const R& r, const T& v)
template <parlay::Range R, typename UnaryPred>
auto remove_if(const R& r, UnaryPred pred)
remove returns a sequence consisting of the elements of the range r
with any occurrences of v
omitted. remove_if returns a sequence consisting of the elements of the range r
with any elements such that the given predicate returns true omitted.
template <typename Index>
auto iota(Index n)
iota returns a sequence of the given template type consisting of the integers from 0
to n-1
.
template <parlay::Range R>
auto flatten(const R& r)
flatten takes a range of ranges and returns a single sequence consisting of the concatenation of each of the underlying ranges.
Parlay's memory allocator can be used a C++ allocator for a container, for example, for std::vector
, and for parlays own parlay::sequence
.
// Create a sequence whose buffer will be allocated using Parlay's allocator
auto seq = parlay::sequence<int, parlay::allocator<int>>(100000, 0);
The allocator can also be use directly without an underlying container. For this, Parlay provides type_allocator, which allocates memory for a particular static type.
using long_allocator = parlay::type_allocator<long>;
long* x = long_allocator::alloc();
*x = 5;
long_allocator::free(x);