Хронологическое упорядочение

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

В квантовой теории поля вводится операция хронологического произведения или хронологического упорядочения операторов. Эта операция обозначается и для двух операторов и , которые зависят от координат и времени, определяется следующим образом:

где и -временные компоненты векторов и .

Иначе можно записать:

где - функция Хевисайда, а знак зависит от природы оператора: в бозонном случае знак всегда +, в фермионном знак зависит от чётности перестановки операторов, необходимой для правильного порядка: увеличение временного аргумента происходит справа налево.

Поскольку операторы зависят от координат, операция временного упорядочения независима от координат только в случае, если операторы в точках, разделённых пространственно-подобным интервалом, коммутируют.

В общем случае, для произведения n операторов поля A1(t1), …, An(tn) -упорядочение произведения операторов определяется по формуле:

где суммирование идёт по всем p и по симметрической группе перестановок n-го порядка. Для бозонных операторов , для фермионных , где k-чётность перестановки.

Литература

[править | править код]
  • Биленький С.М. Введение в диаграммную технику Фейнмана. — Рипол Классик, 2013. — С. 74. — 222 с.