Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds clip range for JointAction #1476

Merged
merged 9 commits into from
Dec 15, 2024
Merged
Prev Previous commit
Next Next commit
preprocess in init
  • Loading branch information
fan-ziqi committed Dec 12, 2024
commit a1ed867c4f865c41398e9d2c76be76204e7f12fe
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ class BinaryJointAction(ActionTerm):
"""The configuration of the action term."""
_asset: Articulation
"""The articulation asset on which the action term is applied."""
_clip: dict[str, tuple] | None = None
_clip: torch.Tensor
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.BinaryJointActionCfg, env: ManagerBasedEnv) -> None:
Expand Down Expand Up @@ -85,9 +85,11 @@ def __init__(self, cfg: actions_cfg.BinaryJointActionCfg, env: ManagerBasedEnv)
self._close_command[index_list] = torch.tensor(value_list, device=self.device)

# parse clip
if cfg.clip is not None:
if self.cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
self._clip = torch.tensor([[-float('inf'), float('inf')]], device=self.device).expand(self.num_envs, self.action_dim, 2).clone()
index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.clip, self._joint_names)
self._clip[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

Expand Down Expand Up @@ -123,13 +125,8 @@ def process_actions(self, actions: torch.Tensor):
binary_mask = actions < 0
# compute the command
self._processed_actions = torch.where(binary_mask, self._close_command, self._open_command)
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
if self.cfg.clip is not None:
self._processed_actions = torch.clamp(self._processed_actions, min=self._clip[:, :, 0], max=self._clip[:, :, 1])

def reset(self, env_ids: Sequence[int] | None = None) -> None:
self._raw_actions[env_ids] = 0.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ class JointAction(ActionTerm):
"""The scaling factor applied to the input action."""
_offset: torch.Tensor | float
"""The offset applied to the input action."""
_clip: dict[str, tuple] | None = None
_clip: torch.Tensor
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.JointActionCfg, env: ManagerBasedEnv) -> None:
Expand Down Expand Up @@ -97,9 +97,11 @@ def __init__(self, cfg: actions_cfg.JointActionCfg, env: ManagerBasedEnv) -> Non
else:
raise ValueError(f"Unsupported offset type: {type(cfg.offset)}. Supported types are float and dict.")
# parse clip
if cfg.clip is not None:
if self.cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
self._clip = torch.tensor([[-float('inf'), float('inf')]], device=self.device).expand(self.num_envs, self.action_dim, 2).clone()
index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.clip, self._joint_names)
self._clip[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

Expand Down Expand Up @@ -129,12 +131,8 @@ def process_actions(self, actions: torch.Tensor):
# apply the affine transformations
self._processed_actions = self._raw_actions * self._scale + self._offset
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
if self.cfg.clip is not None:
self._processed_actions = torch.clamp(self._processed_actions, min=self._clip[:, :, 0], max=self._clip[:, :, 1])

def reset(self, env_ids: Sequence[int] | None = None) -> None:
self._raw_actions[env_ids] = 0.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ class JointPositionToLimitsAction(ActionTerm):
"""The articulation asset on which the action term is applied."""
_scale: torch.Tensor | float
"""The scaling factor applied to the input action."""
_clip: dict[str, tuple] | None = None
_clip: torch.Tensor
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.JointPositionToLimitsActionCfg, env: ManagerBasedEnv):
Expand Down Expand Up @@ -79,9 +79,11 @@ def __init__(self, cfg: actions_cfg.JointPositionToLimitsActionCfg, env: Manager
else:
raise ValueError(f"Unsupported scale type: {type(cfg.scale)}. Supported types are float and dict.")
# parse clip
if cfg.clip is not None:
if self.cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
self._clip = torch.tensor([[-float('inf'), float('inf')]], device=self.device).expand(self.num_envs, self.action_dim, 2).clone()
index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.clip, self._joint_names)
self._clip[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

Expand Down Expand Up @@ -110,13 +112,8 @@ def process_actions(self, actions: torch.Tensor):
self._raw_actions[:] = actions
# apply affine transformations
self._processed_actions = self._raw_actions * self._scale
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
if self.cfg.clip is not None:
self._processed_actions = torch.clamp(self._processed_actions, min=self._clip[:, :, 0], max=self._clip[:, :, 1])
# rescale the position targets if configured
# this is useful when the input actions are in the range [-1, 1]
if self.cfg.rescale_to_limits:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ class NonHolonomicAction(ActionTerm):
"""The scaling factor applied to the input action. Shape is (1, 2)."""
_offset: torch.Tensor
"""The offset applied to the input action. Shape is (1, 2)."""
_clip: dict[str, tuple] | None = None
_clip: torch.Tensor
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.NonHolonomicActionCfg, env: ManagerBasedEnv):
Expand Down Expand Up @@ -108,9 +108,11 @@ def __init__(self, cfg: actions_cfg.NonHolonomicActionCfg, env: ManagerBasedEnv)
self._scale = torch.tensor(self.cfg.scale, device=self.device).unsqueeze(0)
self._offset = torch.tensor(self.cfg.offset, device=self.device).unsqueeze(0)
# parse clip
if cfg.clip is not None:
if self.cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
self._clip = torch.tensor([[-float('inf'), float('inf')]], device=self.device).expand(self.num_envs, self.action_dim, 2).clone()
index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.clip, self._joint_names)
self._clip[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

Expand Down Expand Up @@ -139,12 +141,8 @@ def process_actions(self, actions):
self._raw_actions[:] = actions
self._processed_actions = self.raw_actions * self._scale + self._offset
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
if self.cfg.clip is not None:
self._processed_actions = torch.clamp(self._processed_actions, min=self._clip[:, :, 0], max=self._clip[:, :, 1])

def apply_actions(self):
# obtain current heading
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ class DifferentialInverseKinematicsAction(ActionTerm):
"""The articulation asset on which the action term is applied."""
_scale: torch.Tensor
"""The scaling factor applied to the input action. Shape is (1, action_dim)."""
_clip: dict[str, tuple] | None = None
_clip: torch.Tensor
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.DifferentialInverseKinematicsActionCfg, env: ManagerBasedEnv):
Expand Down Expand Up @@ -105,9 +105,11 @@ def __init__(self, cfg: actions_cfg.DifferentialInverseKinematicsActionCfg, env:
self._offset_pos, self._offset_rot = None, None

# parse clip
if cfg.clip is not None:
if self.cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
self._clip = torch.tensor([[-float('inf'), float('inf')]], device=self.device).expand(self.num_envs, self.action_dim, 2).clone()
index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.clip, self._joint_names)
self._clip[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

Expand Down Expand Up @@ -135,13 +137,8 @@ def process_actions(self, actions: torch.Tensor):
# store the raw actions
self._raw_actions[:] = actions
self._processed_actions[:] = self.raw_actions * self._scale
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
if self.cfg.clip is not None:
self._processed_actions = torch.clamp(self._processed_actions, min=self._clip[:, :, 0], max=self._clip[:, :, 1])
# obtain quantities from simulation
ee_pos_curr, ee_quat_curr = self._compute_frame_pose()
# set command into controller
Expand Down